2,269 research outputs found

    Properties of bars in the local universe

    Full text link
    We studied the fraction and properties of bars in a sample of about 3000 galaxies extracted from SDSS-DR5. This represents a volume limited sample with galaxies located between redshift 0.01-20, and inclination i < 60. Interacting galaxies were excluded from the sample. The fraction of barred galaxies in our sample is 45%. We found that 32% of S0s, 55% of early-type spirals, and 52% of late-type spirals are barred galaxies. The bars in S0s galaxies are weaker than those in later-type galaxies. The bar length and galaxy size are correlated, being larger bars located in larger galaxies. Neither the bar strength nor bar length correlate with the local galaxy density. On the contrary, the bar properties correlate with the properties of their host galaxies. Galaxies with higher central light concentration host less and weaker bars.Comment: 2 pages, 1 figure to appear in the proceedings of "Formation and Evolution of Galaxy Disks", Rome, October 2007, Eds. J. Funes and E. M. Corsin

    Dissecting Kinematics and Stellar Populations of Counter-Rotating Galaxies with 2-Dimensional Spectroscopy

    Full text link
    We present a spectral decomposition technique and its applications to a sample of galaxies hosting large-scale counter-rotating stellar disks. Our spectral decomposition technique allows to separate and measure the kinematics and the properties of the stellar populations of both the two counter-rotating disks in the observed galaxies at the same time. Our results provide new insights on the epoch and mechanism of formation of these galaxies.Comment: 4 pages, 3 figures. Contributed talk presented at the Conference "Multi-Spin galaxies", September 30 - October 3, 2013, INAF-Astronomical Observatory of Capodimonte, Naples, Italy. To be published in ASP Conf. Ser., Multi-Spin Galaxies, ed. E. Iodice & E. M. Corsini (San Francisco: ASP

    Workers' Choice on Pension Schemes: an Assessment of the Italian TFR Reform Through Theory and Simulations

    Get PDF
    In this paper we aim at providing a theoretical framework to model workers’ choice problem of switching between different pension schemes. This choice problem is common in several countries that have reformed their social security system in the last decades. Although with some specific features, such process is currently affecting private sector employees in Italy, since the reform of the TFR mechanism in 2007. This reform basically allows workers to choose between a scheme directly managed by the firms and an external defined contribution scheme. In their decision workers not only have to weight out the different pros and cons that different schemes offer but they also have to consider the effect that their choice exerts on the financial structure of the firm they work in. Once we have formalized this decision problem, we carry out some simulations in order to replicate the Italian data and to shed some light on the outcomes of the Italian reform

    The Black Hole Mass of Abell 1836-BCG and Abell 3565-BCG

    Full text link
    Two brightest cluster galaxies (BCGs), namely Abell 1836-BCG and Abell 3565-BCG, were observed with the Advanced Camera for Surveys (ACS) and the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope. By modeling the available photometric and kinematic data, it resulted that the mass of Abell 1836-BCG and Abell 3565-BCG are M_bh=4.8(+0.8,-0.7)x10^9 M_sun and M_bh=1.3(+0.3,-0.4)x10^9 M_sun at 1 sigma confidence level, respectively.Comment: 4 pages, 3 figures, Mem SAIt in press, Proceedings of the 51st Annual Meeting of the Italian Astronomical Society, Florence, April 17-20, 200

    Mountain landslides: Monitoring, modeling, and mitigation

    Get PDF
    This editorial paper summarizes the contents of the papers included in the Special Issue "Mountain Landslides: Monitoring, Modeling, and Mitigation". The Special Issue provides an overview of methodological papers, as well as some innovative research carried out in the field and in the lab. Even if most papers adopted an integrated approach, sections representing the three research issues outlined in the title can be drawn: the first deals with monitoring, the second focuses on modeling, and the third is related to mitigation. Regardless of the section, the papers included in this special issue put forward methodological and practical implications that, more than likely, can stimulate further research efforts and support the stakeholders to gain better knowledge of landslide hazards in mountain environments, with an aim to tackle the urgent issue of sustainable development in times of global change that can affect landslide occurrences in mountain chains of the world

    Structural properties of disk galaxies I. The intrinsic ellipticity of bulges

    Full text link
    (Abridged) A variety of formation scenarios was proposed to explain the diversity of properties observed in bulges. Studying their intrinsic shape can help in constraining the dominant mechanism at the epochs of their assembly. The structural parameters of a magnitude-limited sample of 148 unbarred S0--Sb galaxies were derived in order to study the correlations between bulges and disks as well as the probability distribution function (PDF) of the intrinsic equatorial ellipticity of bulges. It is presented a new fitting algorithm (GASP2D) to perform the two-dimensional photometric decomposition of galaxy surface-brightness distribution. This was assumed to be the sum of the contribution of a bulge and disk component characterized by elliptical and concentric isophotes with constant (but possibly different) ellipticity and position angles. Bulge and disk parameters of the sample galaxies were derived from the J-band images which were available in the Two Micron All Sky Survey. The PDF of the equatorial ellipticity of the bulges was derived from the distribution of the observed ellipticities of bulges and misalignments between bulges and disks. Strong correlations between the bulge and disk parameters were found. About 80% of bulges in unbarred lenticular and early-to-intermediate spiral galaxies are not oblate but triaxial ellipsoids. Their mean axial ratio in the equatorial plane is = 0.85. There is not significant dependence of their PDF on morphology, light concentration, and luminosity. The interplay between bulge and disk parameters favors scenarios in which bulges assembled from mergers and/or grew over long times through disk secular evolution. But all these mechanisms have to be tested against the derived distribution of bulge intrinsic ellipticities.Comment: 24 pages, 13 figures, accepted for publication in A&A, corrected proof

    Injunction Against Prosecution of Divorce Actions in Other States

    Get PDF
    Aims: The formation scenario of extended counter-rotating stellar disks in galaxies is still debated. In this paper, we study the S0 galaxy IC 719 known to host two large-scale counter-rotating stellar disks in order to investigate their formation mechanism. Methods: We exploit the large field of view and wavelength coverage of the Multi Unit Spectroscopic Explorer (MUSE) spectrograph to derive two-dimensional (2D) maps of the various properties of the counter-rotating stellar disks, such as age, metallicity, kinematics, spatial distribution, the kinematical and chemical properties of the ionized gas, and the dust map. Results: Due to the large wavelength range, and in particular to the presence of the Calcium Triplet \u3bb\u3bb8498, 8542, 8662 \uc5 (CaT hereafter), the spectroscopic analysis allows us to separate the two stellar components in great detail. This permits precise measurement of both the velocity and velocity dispersion of the two components as well as their spatial distribution. We derived a 2D map of the age and metallicity of the two stellar components, as well as the star formation rate and gas-phase metallicity from the ionized gas emission maps. Conclusions: The main stellar disk of the galaxy is kinematically hotter, older, thicker and with larger scale-length than the secondary disk. There is no doubt that the latter is strongly linked to the ionized gas component: they have the same kinematics and similar vertical and radial spatial distribution. This result is in favor of a gas accretion scenario over a binary merger scenario to explain the origin of counter-rotation in IC 719. One source of gas that may have contributed to the accretion process is the cloud that surrounds IC 719

    Optimization of an axial fan for air cooled condensers

    Get PDF
    We report on the low noise optimization of an axial fan specifically designed for the cooling of CSP power plants. The duty point presents an uncommon combination of a load coefficient of 0.11, a flow coefficient of 0.23 and a static efficiency ηstat &gt; 0.6. Calculated fan Reynolds number is equal to Re = 2.85 x 107. Here we present a process used to optimize and numerically verify the fan performance. The optimization of the blade was carried out with a Python code through a brute-force-search algorithm. Using this approach the chord and pitch distributions of the original blade are varied under geometrical constraints, generating a population of over 24000 different possible individuals. Each individual was then tested using an axisymmetric Python code. The software is based on a blade element axisymmetric principle whereby the rotor blade is divided into a number of streamlines. For each of these streamlines, relationships for velocity and pressure are derived from conservation laws for mass, tangential momentum and energy of incompressible flows. The final geometry was eventually chosen among the individuals with the maximum efficiency. The final design performance was then validated through with a CFD simulation. The simulation was carried out using a RANS approach, with the cubic k -  low Reynolds turbulence closure of Lien et al. The numerical simulation was able to verify the air performance of the fan and was used to derive blade-to-blade distributions of design parameters such as flow deviation, velocity components, specific work and diffusion factor of the optimized blade. All the computations were performed in OpenFoam, an open source C++- based CFD library. This work was carried out under MinWaterCSP project, funded by EU H2020 programme
    • 

    corecore