293 research outputs found

    Role of coherence in the plasmonic control of molecular absorption

    Get PDF
    The interpretation of nanoplasmonic effects on molecular properties, such as metal-enhanced absorption or fluorescence, typically assumes a fully coherent picture (in the quantum-mechanical sense) of the phenomena. Yet, there may be conditions where the coherent picture breaks down, and the decoherence effect should be accounted for. Using a state-of-the-art multiscale model approach able to include environment-induced dephasing, here we show that metal nanoparticle effects on the light absorption by a nearby molecule is strongly affected (even qualitatively, i.e., suppression vs enhancement) by molecular electronic decoherence. The present work shows that decoherence can be thought of as a further design element of molecular nanoplasmonic systems

    Photochemistry in the strong coupling regime: A trajectory surface hopping scheme

    Get PDF
    The strong coupling regime between confined light and organic molecules turned out to be promising in modifying both the ground state and the excited states properties. Under this peculiar condition, the electronic states of the molecule are mixed with the quantum states of light. The dynamical processes occurring on such hybrid states undergo several modifications accordingly. Hence, the dynamical description of chemical reactivity in polaritonic systems needs to explicitly take into account the photon degrees of freedom and nonadiabatic events. With the aim of describing photochemical polaritonic processes, in the present work, we extend the direct trajectory surface hopping scheme to investigate photochemistry under strong coupling between light and matter

    Angle-resolved photoemission spectroscopy from first-principles quantum Monte Carlo

    Get PDF
    Angle-resolved photoemission spectroscopy allows one to visualize in momentum space the probability weight maps of electrons subtracted from molecules deposited on a substrate. The interpretation of these maps usually relies on the plane wave approximation through the Fourier transform of single particle orbitals obtained from density functional theory. Here we propose a first-principle many-body approach based on quantum Monte Carlo (QMC) to directly calculate the quasi-particle wave functions (also known as Dyson orbitals) of molecules in momentum space. The comparison between these correlated QMC images and their single particle counterpart highlights features that arise from many-body effects. We test the QMC approach on the linear C2H2, CO2, and N2 molecules, for which only small amplitude remodulations are visible. Then, we consider the case of the pentacene molecule, focusing on the relationship between the momentum space features and the real space quasi-particle orbital. Eventually, we verify the correlation effects present in the metal CuCl42- planar complex

    Do We Really Need Quantum Mechanics to Describe Plasmonic Properties of Metal Nanostructures?

    Get PDF
    Optical properties of metal nanostructures are the basis of several scientific and technological applications. When the nanostructure characteristic size is of the order of few nm or less, it is generally accepted that only a description that explicitly describes electrons by quantum mechanics can reproduce faithfully its optical response. For example, the plasmon resonance shift upon shrinking the nanostructure size (red-shift for simple metals, blue-shift for d-metals such as gold and silver) is universally accepted to originate from the quantum nature of the system. Here we show instead that an atomistic approach based on classical physics, ωFQFμ (frequency dependent fluctuating charges and fluctuating dipoles), is able to reproduce all the typical “quantum” size effects, such as the sign and the magnitude of the plasmon shift, the progressive loss of the plasmon resonance for gold, the atomistically detailed features in the induced electron density, and the non local effects in the nanoparticle response. To support our findings, we compare the ωFQFμ results for Ag and Au with literature time-dependent DFT simulations, showing the capability of fully classical physics to reproduce these TDDFT results. Only electron tunneling between nanostructures emerges as a genuine quantum mechanical effect, that we had to include in the model by an ad hoc term

    Slow fluctuations in enhanced Raman scattering and surface roughness relaxation

    Full text link
    We propose an explanation for the recently measured slow fluctuations and ``blinking'' in the surface enhanced Raman scattering (SERS) spectrum of single molecules adsorbed on a silver colloidal particle. We suggest that these fluctuations may be related to the dynamic relaxation of the surface roughness on the nanometer scale and show that there are two classes of roughness with qualitatively different dynamics. The predictions agree with measurements of surface roughness relaxation. Using a theoretical model for the kinetics of surface roughness relaxation in the presence of charges and optical electrical fields, we predict that the high-frequency electromagnetic field increases both the effective surface tension and the surface diffusion constant and thus accelerates the surface smoothing kinetics and time scale of the Raman fluctuations in manner that is linear with the laser power intensity, while the addition of salt retards the surface relaxation kinetics and increases the time scale of the fluctuations. These predictions are in qualitative agreement with the Raman experiments

    Optical Excitations and Field Enhancement in Short Graphene Nanoribbons

    Full text link
    The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semi-empirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake, and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries

    Optimisation of electrophoretic deposition parameters for gas diffusion electrodes in high temperature polymer electrolyte membrane fuel cells

    Get PDF
    Electrophoretic deposition (EPD) method was used to fabricate gas diffusion electrodes (GDEs) for high temperature polymer electrolyte membrane fuel cells (HT PEMFC). Parameters related to the catalyst suspension and the EPD process were studied. Optimum suspension conditions are obtained when the catalyst particles are coated with Nafion® ionomer and the pH is adjusted to an alkaline range of about 8 e10. These suspensions yield good stability with sufficient conductivity to form highly porous catalyst layers on top of the gas diffusion layers (GDLs). GDEs were fabricated by applying various electric field strengths of which 100 V cm-1 yields the best membrane electrode assembly (MEA) performance. Compared to an MEA fabricated by the traditional hand sprayed (HS) method, the EPD MEA shows superior performance with a peak power increase of about 73% at similar platinum (Pt) loadings. Electrochemical Impedance Spectroscopy (EIS) analysis shows lower charge transfer resistance for the MEA fabricated via the EPD method compared to the HS MEA. The EPD GDE exhibits a greater total pore area (22.46 m2 g-1) compared to the HS GDE (13.43 m2 g-1) as well as better dispersion of the Pt particles within the catalyst layer (CL).Web of Scienc
    corecore