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Abstract

The strong coupling regime between confined light and organic molecules turned

out to be promising in modifying both the ground state and the excited states prop-

erties. Under this peculiar condition, the electronic states of the molecule are mixed

with the quantum states of light. The dynamical processes occurring on such hybrid

states undergo several modifications accordingly. Hence, the dynamical description

of chemical reactivity in polaritonic systems needs to explicitly take into account the

photon degrees of freedom and non-adiabatic events. With the aim of describing pho-

tochemical polaritonic processes, in the present work we extend the direct trajectory

surface hopping scheme to investigate photochemistry under strong coupling between

light and matter.
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INTRODUCTION

The coherent interaction between light and matter in confined systems offers an alterna-

tive pathway to tailor optical and chemical properties of molecules. While the spectroscopy

of atoms and molecules in resonant cavities is well established, the possibility to manipu-

late the molecular reactivity through quantum coupling with light has only recently been

addressed. By devising microcavities1,2 and nanocavities3,4, the experimental efforts5,6 to

bring molecules in the strong coupling regime down to the single molecule level have driven

an increasing theoretical interest7–10. Yet, the modeling of such complex systems experiences

limitations both theoretical and computational.

Understanding which approximations can hold for a correlated nuclear-photonic-electronic

system is indeed challenging11,12. Even more, an important option is wether to couple the

photonic degrees of freedom to nuclear ones or to the electronic ones8,13,14. Within the

first approach, the photonic degrees of freedom are treated so as the nuclear ones, allow-

ing to study the effect of the electron-nuclei-photon coupling on adiabatic potential energy

surfaces. Such approach provides insightful tools of analysis for phenomena like Raman Scat-

tering15,16, modified molecular properties14,17 and ground state reactivity18–20. Instead, the

second approach, in which electronic and photonic states are mixed, is suitable to describe

the modified photochemical properties8,21 and reactivity22–24, provided that non-adiabatic

couplings are taken into account.

A full quantum approach has been developed by Rubio’s group in the DFT framework.

The method is based on rewriting the DFT formulation in terms of a current density func-

tional which allows to include the photonic degrees of freedom10,25,25 (QEDFT). Later on,

the same group reformulated the Born-Oppenheimer approximation to partially decouple the

nuclear-photonic-electronic problem with the so-called Cavity Born-Oppenheimer approxi-

mation13,14. Such works opened a way to a full ab-initio investigation of strongly coupled

light-matter systems10,17,26, with successful applications in strong-coupling modified proper-

ties of single and many molecules.
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Aiming to investigate polaritonic photochemical reactions, the complexity of the system

can quickly become cumbersome. The correct computation of excited states is mandatory,

together with the treatment of the photonic degree of freedom27–29. Further complexity to

the problem is added by interfacing a propagation scheme for the nuclei30 and by accounting

for environmental effects. In addition, the common problems encountered in photochemi-

cal simulations31 are directly transposed to the study of polaritonic photochemical reactions.

A pioneering conceptual display of novel photochemical events in the strong coupling

regime is offered by the works of Mukamel and collaborators7,32,33 and Feist and collabora-

tors8,23,34 on model molecules. Such works collect a plethora of insights for a novel chemical

reactivity ranging from single-molecule strong coupling to collective strong coupling effects.

We have also recently shown how moving beyond model treatments to investigate polari-

tonic chemistry can also reveal noteworthy effects like enhanced photoisomerization quantum

yields35.

To simulate mixed light-molecule systems, a toolbox of strong-coupling techniques for

photochemistry have been developed in the last three years24,36,37. Among them, we men-

tion the multiscale MD approach devised by Groenhof and collaborators, which allows to

investigate the collective polariton behaviour in biological environments through a QM/MM

approach36,38,39. For events occurring in small ensembles of realistic molecules in cavities on

a shorter timescale, the extension of the MCTDH technique to polaritonic systems37,40 is also

remarkable. In recent works24,35 we showed how the Surface Hopping scheme in a semiempir-

ical framework can be used to describe the photochemistry of molecules in a strong coupling

environment with a high level of realism. A similar Surface Hopping scheme has been used

by Tretiak et al.41, which studied the stilbene photoisomerization under strong coupling,

employing a single reference quantum chemical approach for the electronic states. Compar-

atively, in our scheme we also include cavity losses, and our semiempirical multireference

FOMO-CI scheme allows for a qualitatively correct description of potential energy surfaces

and couplings, which is also quantitatively accurate since we riparametrize the semiempirical
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Hamiltonian.

In the present contribution we show in detail the theoretical approximations and the

implementation techniques of our approach to polaritonic chemistry. To this aim, we show

first how polaritonic states are built on top of the semiempirical FOMO-CI42–45 technique for

the computation of electronic states. Then, we derive the analytical gradients for the strong

coupling contribution to the CI energy via the Z-vector46,47 algorithm. We also discuss the

interface with the on-the-fly Direct Trajectory Surface Hopping (DTSH), with emphasis on

the method we have adopted to include the effect of cavity losses on the dynamics.

We want to stress that the hereby presented gradients and Surface Hopping interface

have a general applicability to multiconfigurational wavefunction methods. The choice of

a semiempirical approach to solve the electronic problem resides in the good compromise

between efficiency and accuracy31. We also mention that such approach has been success-

fully applied to deal with the molecular complexity of polaritons when all the degrees of

freedom are taken into account24, and also in the presence of an environment35 inspired to

a realistic setup5. We also stress that, while our method carries the potential to treat a few

chromophores, the study of a large ensemble of molecular systems is beyond the aim of the

present work.

METHODOLOGY

Polaritonic wavefunction in a semiclassical framework

To build polaritonic states, we consider a generalized correlated photon-electron-nuclear

system:

Ĥtot = T̂e + T̂n + T̂ph + Ŵe,e + Ŵe,n + Ŵn,n + Ŵe,ph + Ŵph,n + Ŵph,n,e (1)

where the electronic degrees of freedom are described by the e subscript (r coordinates), the

nuclear ones by the n subscript (R coordinates) and the photon one by the ph subscript

(q coordinates). The total wavefunction of the correlated electron-photon-nuclei system

is: Ψ(r,R, q). Two approaches to approximate the eigenstates and the time-evolution of
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strongly coupled systems have been applied so far: the first is to embed the photon degrees

of freedom into the nuclear wavefunction14 while the second is to embed the photon into the

electronic wavefunction8.

Such two different approaches provide different insight on two classes of processes. In

fact, the molecular properties and the dynamics in the Cavity-Born-Oppenheimer approxi-

mation13,17 are optimally described by incorporating the photon in the nuclear wavefunction

(Ψn+ph,e). Instead, the processes involving nuclear dynamics on polaritonic states, i.e. pho-

tochemical processes, are accurately described by considering hybrid electron-photon states

(polaritons, Ψn,e+ph)
7,24,32,35,48. The Born-Huang factorisations of the wavefunction in these

cases respectively correspond to:

Ψn+ph,e (r, q,R, t) =
∑

k

χk (R, q, t)φel
k (r; q,R) , (2)

Ψn,e+ph(r, q,R, t) =
∑

k

χk(R, t)φe+ph
k (r, q;R). (3)

Equation 2 represents the case where the photon degrees of freedom are considered

slow. Hence, they are treated alike to the nuclear degrees of freedom in the Cavity Born-

Oppenheimer framework13,17. Based on this assumption, the purely electronic wavefunction

and the related electronic potential energy surfaces show a parametric dependence on both

the nuclear and photonic coordinates. This framework explicitly requires to compute the

quantum nuclear wavefunction to include the photon effects, hence it is not properly inter-

faced with semiclassical methods developed treating the whole nuclear dynamics as classical.

In the factorisation presented in eq. 3, the photonic degrees of freedom are considered

fast and possibly resonant with optical transitions. Within this framework, the parametric

dependence of the mixed electronic-photonic wavefunction with respect to the nuclear de-

grees of freedom allows to describe the time evolution of a polaritonic wavefunction with

semiclassical trajectory-based methods. In that case, the nuclei are moving according to a

classical trajectory R(t), and the polaritonic non-adiabatic couplings can be included as for

the purely electronic case. In the semiclassical case, we define by analogy with eq. 3 the
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polaritonic wavefunction:

|Ψpol(r, q,R(t), t)〉 =
∑

A

CA(t)|A(r, q;R)〉, (4)

where |A〉 are the semiclassical analogous of the polaritonic states φph+e
k states of eq. 3. We

choose |A〉 to label such states to directly refer to their adiabatic behaviour, as they are the

eigenstates of the polaritonic Hamiltonian:

Ĥpol|A〉 = EA|A〉, (5)

with

Ĥpol = Ĥel + Ĥph + Ĥint. (6)

Here Ĥel is the standard electronic Hamiltonian and Ĥph is the Hamiltonian of the quantized

electromagnetic field (we consider here a single mode for the field),

Ĥph = ~ωph

(

b̂†b̂+
1

2

)

(7)

where b̂†, b̂ are the creation and annihilation operators for the electromagnetic field. In

principle, the approach considered in this work could be extended in a straightforward way

to consider several cavity modes. However, it is uncommon that many modes can reach a

coupling strength large enough to require a strong coupling treatment, not to mention that

they may also be well separated in energy. As interaction Hamiltonian Hint, we take the

dipolar light-matter interaction in the Coulomb gauge and long wavelength approximation:

Ĥint = E1phλ · µ̂tr

(

b̂† + b̂
)

. (8)

In the light-matter interaction, we refer to E1ph as the 1-photon field strength, with the

electromagnetic field polarization λ. µ̂tr is the electronic transition dipole moment between

the electronic states. Notice that Ĥpol is parametrically dependent on the nuclear coordinates

through Ĥel and Ĥint. As we have numerically verified in previous works24,35, for the case

of strong coupling with optical frequencies it is enough to restrain to the transition dipole

operator. We focus term-by-term on the two individual subcomponents of the polaritonic

Hamiltonian, namely Ĥel and Ĥph.
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0.1 FOMO-CI Wavefunction and uncoupled states

The method for the computation of electronic states, i.e. the eigenstates of Ĥel, is based

on floating occupation of molecular orbitals (FOMO)43,44. This variant relies on the opti-

mization of a single determinant wavefunction with fractional variational occupation of the

molecular orbitals through a self consistent field calculation (SCF). The single-deteminant

SCF calculation is formally closed-shell. Here, the energy of the i-th orbital (ϕi) is the Fock

eigenvalue εi corresponding to that orbital, while the occupation number Oi of ϕi is obtained

integrating a function fi(ε) normally distributed along the energy axis around εi:

F̂ϕi = εiϕi, (9)

Oi =

∫ εF

−∞

fi(ε)dε =

∫ εF

−∞

√
2√
πσ

e−
(ε−εi)

2

2σ2 dε. (10)

Here, σ is an arbitrary parameter and the Fermi energy εF is determined by imposing that

the sum of the orbital occupation numbers Oi equals the total number of electrons N . The

Fock operator F̂ is obtained from the density (orbitals are considered as real functions in

the present work)

ρ(~r) =
∑

i

Oiϕ
2
i (~r). (11)

Through this procedure, the lower virtual orbitals can be populated without resorting to a

MCSCF optimization of the wavefunction, allowing to smoothly adapt the orbitals to the

internal coordinates variations with just a single determinant. The electronic wavefunctions

are obtained performing a CI calculation on top of the FOMO-SCF, resulting in a multicon-

figurational FOMO-CI. This approach can be taken as a replacement of the more accurate

but much more complex CASSCF procedure.

As electronic Hamiltonian Ĥel we consider a semiempirical Hamiltonian, as this allows

to treat relatively large chromophores, including all the degrees of freedom in the simulation

of polaritonic photochemistry, for timescales up to several picoseconds. In particular, for

our test case we used a re-parametrized version of the AM1 semiempirical Hamiltonian42.

Notice that the standard semiempirical parameters are normally determined to reproduce

ground state properties, with a SCF wavefunction. Therefore, to deal with excited states, a
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reparametrization is often mandatory, as what has been done in ref.42.

As we adopt a CI-type wavefunction, the (approximated) eigenstates |n〉 of Ĥel and the

corresponding eigenenergies Un are obtained diagonalising the electronic Hamiltonian matrix:

Ĥel|n〉 = Un|n〉, (12)

on the basis of a chosen set of NCI Slater’s determinants {Φ}, so that

|n〉 =
NCI
∑

K

CK,n|ΦK〉 (13)

Similarly to the electronic states, the photon states are the eigenstates |p〉 of Ĥph:

Ĥph|p〉 = ~ωph

(

p+
1

2

)

|p〉. (14)

The meaning of p is a photon occupation state number, for the single electromagnetic mode

of frequency ωph considered here.

The product states between the electronic and photonic eigenstates, |n, p〉 are then the

eigenstates of the light-matter non-interacting Hamiltonian Ĥel + Ĥph. We shall address to

them as uncoupled states through all the present work. Such set of uncoupled states |n, p〉
are the polaritonic equivalent of, for example, the spin-diabatic states for the purely elec-

tronic case with spin-orbit coupling49.

1 Polaritonic states evolution and energies

The time evolution of the wavefunction is performed in terms of the polaritonic adiabatic

states |A〉, which are obtained by diagonalization of the matrix of Ĥpol (eq. 6) on a selected

subspace of N × (pmax + 1) uncoupled states {n, p}, where N ≤ NCI is the number (usually

small) of electronic states considered, and pmax is the maximum value of the photon occu-

pation number. The set of adiabatic states |A〉 is used to perform the time evolution as the

surface hopping approach is representation-dependent, and usually performs better in the
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adiabatic basis. However, the set of uncoupled states |n, p〉 is still useful, mainly in order

to ease the interpretation of the results. Within the described framework, the polaritonic

wavefunction evolves according to the “polaritonic TDSE” i~Ψ̇pol = ĤpolΨpol, which gives

ĊA(t) = −
∑

B

(

i

~
HAB +

〈

A

∣

∣

∣

∣

d

dt

∣

∣

∣

∣

B

〉)

CB(t) (15)

= −
∑

B

(

i

~
HAB +GAB · Ṙ(t)

)

CB(t), (16)

whereHAB =
〈

A
∣

∣

∣
Ĥpol

∣

∣

∣
B
〉

andGAB is the derivative coupling vector between the polaritonic

states |A〉 and |B〉, namely

GAB =
〈

A
∣

∣

∣
∇̂R

∣

∣

∣
B
〉

. (17)

According to eq. 13, a polaritonic state can be written as:

|A〉 =
N
∑

n=1

pmax
∑

p=0

DA
n,p|n, p〉 =

∑

n,p

DA
n,p

NCI
∑

K

CK,n|ΦK , p〉, (18)

and its energy is

EA
pol = EA

el + EA
ph + EA

int, (19)

where the contribution of the uncoupled part can be extracted by exploiting eqs. 14 and 18,

resulting in:

EA
el =

∑

n

Un

∑

p

∣

∣DA
n,p

∣

∣

2
(20)

EA
ph = ~ωph

(

∑

n,p

p
∣

∣DA
n,p

∣

∣

2
+

1

2

)

. (21)

The interaction term EA
int is given by

EA
int = E1ph

∑

n 6=m

〈m|λ · µ̂(R)|n〉D(A|m,n) (22)

where we used the shorthand

D(A|m,n) =

pmax−1
∑

p=0

√

p+ 1
(

DA
n,pD

A
m,p+1 +DA

n,p+1D
A
m,p

)

. (23)

Notice that D(A|m,n) = D(A|n,m).
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When m < n the process described is the molecule exchanging the photon of frequency

ωph with the cavity, with the photon at frequency ωph. The rate of such exchange is the

Rabi splitting (Jaynes-Cummings Hamiltonian)50,51. In this regime, the emission rate and

efficiency is greatly enhanced through the Purcell effect48,52 and the energy is coherently

exchanged between matter and cavity. Such energy contribution is the Rabi splitting. In-

stead, when m > n, the so-called counter rotating terms accounts for the simultaneous

creation/annihilation of two off-resonant excitations within the cavity. Such terms become

non-negligible, together with the dipolar self-energy of the molecule, in the ultrastrong cou-

pling regime11,12.

From now on, we will use i, j, . . . to label CI-active molecular orbitals (MO) and a, b for

any kind of MO. A more appealing expression, from the computational point of view, of the

interaction energy EA
int is obtained by using the spinless electronic density matrix, suitably

modified, of the polaritonic state |A〉 considered. In particular we have

EA
int = E1ph

∑

ij

ρintij (A)µij, (24)

where µij = 〈i|λ · µ̂|j〉 and

ρintij (A) =
∑

n 6=m

D(A|m,n)∆el
ij(m,n). (25)

∆el
ij(m,n) is the spinless transition density matrix between the electronic states m and n,

expanded on the molecular orbital basis. The action of the bosonic creators and annihila-

tors of eq. 8 is embedded into the D(A|m,n) coefficients. Therefore, ∆el
ij(m,n) is purely

electronic:

∆el
ij(m,n) = 〈m|â†i âj|n〉 =

∑

I,J

CI,m〈ΦI |â†i âj|ΦJ〉CJ,n (26)

Within our method, we are able to compute the Polaritonic Potential Energy Surfaces

(PoPESs) up to an arbitrary occupation number of the photonic mode involved in strong

coupling.

We shall now briefly discuss the dependence of the PoPESs on the molecular transition

dipole moments. Upon diagonalization, a crossing of the uncoupled states PES is converted
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to a polaritonic avoided crossing. The magnitude of the splitting (Rabi splitting) is pro-

portional to the transition dipole moment between the crossing states, potentially reaching

zero for vanishing transition dipole moments (polaritonic conical intersection). The strong

dependence of the Rabi splitting on the transition dipole moment also embodies a strong

dependence on the nuclear geometry at which the crossing between uncoupled states occurs,

as the transition dipole moments variation with nuclear geometry may be large. Note that

the orientation of the molecule here plays the same role as the internal coordinates, because

it affects the projection of the transition dipole on the field polarization vector.

While the polaritonic conical intersection and avoided crossings have been reported in

previous works8,24,40,53,54, here we stress that they are an easy-to-predict feature only when

limited to two level strong coupling models, i.e. Jaynes-Cummings like. Two-level models

imply a linear dependence of the Rabi splitting on the coupling constant E1ph. As the

number of electronic states is extended by including upper states (Figure 1a), the interaction

between the polaritons originating the avoided crossing or conical intersections becomes more

involved. This behaviour is due to the interaction between the uncoupled states not directly

crossing, originated by the counter-rotating terms in the Hamiltonian. The sum of such

interactions deeply affects the polaritonic energy landscape by modifying both the splitting

and the crossing geometry, as shown in Figure 1a and Figure 1b for the azobenzene molecule.

We stick to azobenzene as a test case, since the phenomenology of polaritonic photochem-

istry has been investigated in recent works24,35. In the present work, instead, we focus on

discussing the change of shape of the polaritonic avoided crossing regions, computed along

NNC for different values of E1ph. For mode volumes smaller than 20 nm3 (E1ph > 0.003), the

polaritonic crossing seam gets displaced to up to 8 degrees along the NNC coordinate while

the Rabi splitting is not much affected, as shown in Figure 1. The curves here are computed

within a model space of uncoupled states composed by 5 electronic states and photon oc-

cupation number ranging from 0 to 3. The polaritonic state energies are computed along

the symmetric NNC bending angles with fixed CNNC (180◦) and optimizing all the other

degrees of freedom for the ground state energy, resulting in a C2 symmetry. The photon

frequency is set at 2.30 eV and the polarization of the field is oriented along the longitudinal
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axis of the molecule. Here, the high transition dipole moment between the state S0 and the

S2, S3 and S4 states manifold is instrumental in modifying the avoided |S0, 1〉,|S1, 0〉 crossing
landscape by effect of the interaction between the state |S0, 1〉 and the |S2, 0〉, |S3, 0〉 and

|S4, 0〉 manifold.

We examine the whole range of E1ph going from 0.002 au (corresponding to a mode volume

of ∼ 40 nm3) to E1ph = 0.010 au (∼ 1.6 nm3). While a mode volume of 40 nm3 is in line

with typical nanocavities5, the extreme limit of ∼ 1 nm3 has been accessed experimentally

via single-atom hotspots55,56. In all the conditions examined in this work, the mode volume

is enough to fully embed the molecule (the molecular volume being ∼ 0.25 nm3). A few

works pioneer the interaction beyond the dipolar approximation for small mode volumes

for TERS experiments57,58, but not in connection with polaritonic photochemistry. More

practically, it is not clear at which volumes and in which conditions the dipolar approximation

ceases to be valid in the framework of dynamical processes. Moving beyond the dipolar

treatment for polaritonic photochemistry carries the promise to reveal new effects for strong

coupling at sub-molecular level. However, in the present case we limit ourselves to the dipolar

approximation for the whole range of mode volumes investigated.

The polarization of the field is another important issue to deal with when computing

polaritonic states. Indeed, the anisotropy of the transition dipole moment components with

respect to the axes of the molecule impacts the outcoming energy landscape as well. For

trans-azobenzene at nearly planar geometries, the largest component of the transition dipole

moments lies in the molecular plane. In particular, at C2h geometries the 〈S0 |µ̂|S1〉 tran-

sition dipole vanishes. As a consequence, by changing the polarization of the field from

longitudinal (λ‖) to perpendicular (λ⊥) to the plane of the molecule, the PoPESs change

from the ones in Figure 1a to the ones in Figure 2a. In the latter case the dependence of the

splitting on the coupling strength is lost due to a vanishing transition dipole moment when

CNNC is 180◦.

Although the uncoupled states used in the calculation are the same as in Figure 1, almost

all the lines corresponding to different E1ph are overlapped in Figure 2a. The transition dipole

moments perpendicular to the plane of the molecule begin to rapidly grow when twisting the

molecule, i.e. with a change along the CNNC coordinate. Consequently, the polaritons are
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split again by a twisting of the CNNC dihedral, resulting in a polaritonic conical intersection

(Figure 2b) at CNNC 180◦ and NNC 132◦. All these features provide a clear evidence that the

molecular complexity must be dealt with to correctly describe the photochemical dynamics

on polaritonic states.

Analytical gradients for CI-expanded polaritonic states

After showing the strong coupling contribution to the energy in the previous section (eq. 24),

here we derive the analytical energy gradient with respect to the nuclear coordinates Rα for

a generic FOMO-CI expanded polaritonic state. The present approach is based on previous

works44,59, where the Z-vector method has been applied. In particular, here we adapt to the

polaritonic case the “contracted” strategy that was developed in a spin-orbit framework45.

As in refs.45,59, only the active MOs are allowed to have floating occupation numbers. The

gradient of the energy can be partitioned in a response term, containing the derivatives of

CI and MO coefficients, and a static term. The static contribution specific to the present

case is given by the derivative of the molecular dipole operator matrix elements in terms of

atomic orbitals (AO). As for the response terms, notice that the derivatives of the expansion

coefficients DA
n,p of the polaritonic adiabatic state |A〉 give a null contribution to

∂EA
pol

∂Rα
, since

∂EA
pol

∂DA
n,p

= 0 by construction. As a consequence, since EA
ph does not involve geometry dependent

quantities other than the DA coefficients (in the long wavelength approximation), it does

not contribute to the gradient and will not be considered further here. At variance, the

derivatives of the electronic CI coefficients CI,n have to be considered.

We have then
∂EA

pol

∂Rα

=
∂EA

el

∂Rα

+
∂EA

int

∂Rα

. (27)

The gradients for the electronic energies Un entering
∂EA

el

∂Rα
are known44,45,47,59. Hence, here

we only show explicitely the evaluation of
∂EA

int

∂Rα
. By making use of eq. 24 one gets

∂EA
int

∂Rα

= E1ph
∑

ij

[

∂ρintij (A)

∂Rα

µij + ρintij (A)
∂µij

∂Rα

]

. (28)

Let µij be the matrix element of the molecular dipole operator µ̂λ in the MO basis, and c the

transformation matrix from the AO to the MO set (c is real orthogonal in the semiempirical
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framework considered here). We have then µ = c†µAOc, where µAO is the matrix of µ̂λ in

the AO basis. Therefore, the derivatives of µ can be expressed as

∂µ

∂Rα

= Bαµ− µBα + c†
∂µAO

∂Rα

c with Bα =
∂c†

∂Rα

c, (29)

which can be decomposed into a static part and a response part44,45,59,

∂µ

∂Rα

∣

∣

∣

∣

static

= c†
∂µAO

∂Rα

c, (30)

∂µ

∂Rα

∣

∣

∣

∣

resp

= Bαµ− µBα (31)

The static term (eq. 30) is easily evaluated as follows. Let χα
σ(~R) be an AO belonging to

nucleus α centered on ~Rα, with ~rrel = ~r − ~Rα. The dipole matrix elements µστ are then, in

the semiempirical framework

~µστ = −e
〈

χα
σ(~rrel) |~r|χβ

τ (~rrel)
〉

= −eδαβ

(

δστ ~Rα + ~fστ

)

(32)

where −e is the electronic charge and the the Kronecker delta δαβ is due to the semiempirical

NDDO approximation. Moreover, the term

~fστ =
〈

χα
σ(~rrel) |~rrel|χβ

τ (~rrel)
〉

(33)

is independent on the nuclear coordinates. Therefore, the derivative of ~µστ with respect to

~Rα vanishes unless the two atomic orbitals σ and τ are both centered on the nucleus α,

and in that case it simply evaluates to −e∂ ~Rα

∂ ~Rα
. In an ab initio context one would have to

compute also the derivative of the dipole matrix elements between atomic orbitals centered

on different atoms, which has a more involved expression with respect to the term considered

here. However, that would not be expected to have a large impact on the computational

cost, which is mainly influenced by the response part of the gradient.

The contribution of the response term of equation 31 to the derivative of EA
int (eq. 28)

can be recast in this way, following Patchkovskii and Thiel46,47

E1ph
∑

ij

ρintij (A)
∂µij

∂Rα

∣

∣

∣

∣

∣

resp

=
∑

i

∑

a

(

Bα
ia +

∂εi

∂Rα

δia

)

qintia , (34)
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where εi is the energy of MO i and

qintii = 0

qintia = 2E1ph
∑

j

ρintij (A)µaj i 6= a.
(35)

As qintii = 0, the term containing the derivative of the orbital energy εi gives a null contri-

bution to the sum of eq. 34. Such term has been included to recover the same formalism of

previous works44,45,59.

We now turn to the derivative of ρintij (A), which is a response term (i.e. the CI response

contribution to the polaritonic energy), evaluated by taking the derivative of ∆el
ij(m,n). Such

derivative is obtained by following the same procedure outlined for the MOs response terms

(eq. 31)

∂∆el
ij(m,n)

∂Rα

=

NCI
∑

k

(

dαmk∆
el
ij(k, n)−∆el

ij(m, k)dαkn
)

(36)

with

dαmn =
∑

J

∂CJm

∂Rα

CJn (37)

Notice that the sum in equation 36 is extended to NCI rather than to the number N of

states selected: in principle, the evaluation of the CI response contribution requires the

full diagonalization of the CI space considered. While this may be too demanding in an

ab initio context, normally it does not represent a problem in a semiempirical framework,

where NCI is usually small. The antisymmetric matrix dαnm, expressing the response of the

CI coefficients, represents the CI contribution to the derivative couplings. We have then

∂EA
int

∂Rα

∣

∣

∣

∣

CI

resp

≡ E1ph
∑

ij

∂ρintij (A)

∂Rα

µij

=
∑

i≤j

∑

n 6=m

Gij(A|m,n)

NCI
∑

k

(

dαmk∆
el
ij(k, n) + dαnk∆

el
ij(m, k)

)

, (38)

where

Gij(A|m,n) = E1phD(A|m,n)µij(2− δij). (39)

According to ref.45, we evaluate the derivative coupling terms dαmn by exploiting the Hellmann-

15



Feynman theorem

dαmn = (Um − Un)
−1
∑

IJ

CI,m

∂〈ΦI |Ĥel|ΦJ〉
∂Rα

CJ,n (40)

=
∑

ij

∆el
ij(m,n)

Um − Un

∂ε+ij

∂Rα

+
∑

ijkl

Γel
ijkl(m,n)

Um − Un

∂〈ij|kl〉
∂Rα

. (41)

for m 6= n, and dαnn = 0. Here Γel
ijkl(m,n) =

〈

m
∣

∣

∣
â
†
i â

†
j âlâk

∣

∣

∣
n
〉

are the two-electron density

matrices and the terms ε+ij are defined in equation (36) of reference45.

Inserting equation 41 into 38 we obtain the following expression for the CI response term

induced by the strong coupling interaction:

∂EA
int

∂Rα

∣

∣

∣

∣

CI

resp

=
∑

ij

∂ε+ij

∂Rα

∆int
ij (A) +

∑

ijkl

∂〈ij|kl〉
∂Rα

Γint
ijkl(A). (42)

where

∆int
ij (A) =

NCI
∑

k

∑

m
m 6=k

∆el
ij(m, k)

Um − Uk

R(A|k,m) (43)

Γint
ijkl(A) =

NCI
∑

k

∑

m
m 6=k

Γel
ijkl(m, k)

Um − Uk

R(A|k,m) (44)

R(A|k,m) =
∑

i≤j

∑

n
n 6=m

2Gij(A|m,n)∆symm
ij (k, n) (45)

∆symm
ij (k, n) =

∆el
ij(k, n) + ∆el

ji(k, n)

2
(46)

Here ∆symm
ij (k, n) is the symmetric part of ∆el

ij(k, n). Notice that it is symmetric with respect

to both i, j and k, n indices, since ∆el
ij(k, n) = ∆el

ji(n, k).

To obtain the final expression for the gradient of EA
pol we have also to consider the

contribution given by the derivative of the naked electronic state energy Un (see ref.59)

∂Un

∂Rα

=
∂E0

∂Rα

+
∑

ij

∆el
ij(n)

∂ε+ij

∂Rα

+
∑

ijkl

Γel
ijkl

∂〈ij|kl〉
∂Rα

. (47)

By putting all the terms together we arrive at

∂EA
pol

∂Rα

=
∂E0

∂Rα

+
∑

ij

∆pol
ij (A)

∂ε+ij

∂Rα

+
∑

ijkl

Γpol
ijkl(A)

∂〈ij|kl〉
∂Rα

+
∑

ai

Bα
iaq

int
ia + E1ph

∑

ij

ρintij (A)
∑

στ

cσi
∂µστ

∂Rα

cτj

(48)
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where we made use of the modified electronic density matrices

∆pol
ij (A) =

∑

n

∆el
ij(n)

∑

p

|DA
n,p|2 +∆int

ij (A) (49)

Γpol
ijkl(A) =

∑

ijkl

Γel
ijkl(n)

∑

p

|DA
n,p|2 + Γint

ijkl(A). (50)

The evaluation of the gradient of EA
pol can proceed in the way outlined in reference59, using

the modified density matrices ∆pol
ij (A) and Γpol

ijkl(A). In particular, the response term is

∂EA
pol

∂Rα

∣

∣

∣

∣

resp

=
∑

i

∑

a

(

Bα
ia +

∂εi

∂Rα

)

(

qelia + qintia

)

, (51)

where qel, defined as done in59 (see also45), is explicitly reported below for reader’s conve-

nience

qelii = ∆pol
ii (A)−Oi −

1

2

∑

jkl

βki 〈lj||kk〉 (∆pol
lj (A)− δljOl) (52)

qelia = 4
∑

jkl

Γpol
ijkl(A) 〈aj|kl〉 −

∑

jk

∆pol
ij (A)Ok 〈kk||aj〉− (53)

∑

jk

∆pol
jk (A)Oi 〈ai||jk〉+

∑

j

OiOj 〈ai||jj〉 (for i 6= a)

βki = fk(εF )

(

fi(εF )
∑

j fj(εF )
− δik

)

(54)

In the above equations we used the shorthand 〈ij||kl〉 = 2 〈ij|kl〉 − 〈ik|jl〉, and fi is the

gaussian function defined in equation 10. Finally, for the static part one has just to add the

last term of equation 48, representing the static dipole derivative (see above).

Surface Hopping

In the framework of Direct Trajectory Surface Hopping, the formulation of strong coupling in

this work allows to include the decoherence corrections60 and environmental effects through

the QM/MM interface previously devised61–63. For the time evolution of the polaritonic wave-

function we adopt the local diabatization technique49,64, with a recently improved evaluation

of transition probabilities. Such probabilities are compliant with Tully’s Fewest Switches pre-

scription and particularly effective when many states are involved in non-adiabatic events65,
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as commonly happens in single-molecule polaritonic systems (see Figure 1b).

As a test case, we examine the azobenzene strong coupling dynamics with ωph = 2.7 eV

and E1ph = 0.004 au (∼ 12 nm3) in the absence of the cavity losses. The initial conditions are

sampled on the ground state via a 20 ps dynamics, thermostated at room temperature (with

a Bussi-Parrinello thermostat66). In particular, 230 starting structures and velocities are

extracted from the sampling dynamics, and the system is initially vertically excited to the

|R8〉 state, that is mostly |S2, 2〉 state. Rather than the simulation of a realistic excitation

(the transition |S0, 0〉 → |S2, 2〉 would require a multiphoton pumping), this is a test case to

investigate the effect of photon occupation numbers greater than 1 (up to p = 3). In Figure

3a we show the behavior of the population of the photon states during the dynamics, in the

absence of cavity losses. The blue line with circle markers (right y scale) shows the the total

photon number within the cavity, namely
〈

b̂†b̂
〉

.

The full lines (left y scale) show the populations of each photon state, i.e.
∑

n|Dn,p|2,
with p = 0, . . . , 3. While no cavity loss is explicitly included in the dynamics, still the total

photon number in the system decreases. Through strong coupling, a photon is continuously

exchanged between the molecule and the cavity. However, the electronic component keeps

decaying via internal conversion, meaning that when the photon is absorbed, its energy

can be redistributed to the nuclear degrees of freedom. While the total number of photon

decreases in the ongoing dynamics, the energy of the system is still conserved (Figure 3b).

The initial conditions are chosen such that the resonant region between the p = 3 states

(namely S0, 3) and the p = 2 states |S1, 2〉 are populated, so both the subspaces |n, 3〉 and
|n, 2〉 are populated. This results into an average photon occupation number greater than

|2〉, namely 2.23.

Cavity Losses

Aiming to provide a realistic model, we deal with the issue of lossy cavities. The strong

coupling regime for single molecules is usually reached by exploiting a nanocavity setup of
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the system5,6,67,68. The typical lifetime of nanocavities is few tens of femtoseconds. However,

we have recently shown that the overall photon lifetime of the system is way longer than

the individual cavity lifetime35, reaching a time scale comparable to several ultrafast pho-

tochemical processes. This effect is due to the transient passage of the wavepacket through

strongly coupled regions, so that the composition of the polaritonic state keeps interchang-

ing between electronic and photonic. As a consequence of the mixing, the lifetime of states

with the photon partially absorbed is extended up to hundreds of fs, depending on the strong

coupling conditions. Within our model, we adapt a quantum jump algorithm69–72 already ex-

ploited in the Stochastic Schrödinger Equation (SSE) framework73 to account for relaxation

and dephasing channels. Stochastic methods in the framework of SSE are also commonly

exploited as an equivalent alternative to master equations in treating cavity losses74–76. We

then follow a standard implementation of this approach, similar to others already present in

Quantum Optics simulation packages like QuTip77.

The quantum jump is a natural choice as it fully exploits the trajectory-based machinery

of the surface hopping. Having to deal with semiclassical trajectories, both the polaritonic

wavefunction and the “current state” (i.e. the adiabatic state on which PES the nuclei are

evolving) must be taken into account whenever a photon loss occurs. We start with the

expression of the polaritonic wavefunction in terms of the uncoupled states basis:

Ψpol =
∑

A

CA|A〉 =
∑

n,p

dn,p|n, p〉. (55)

where dn,p =
∑

A DA
n,pCA. Only states with free photons can decay via cavity losses, namely

states with p ≥ 1. We evaluate the photon loss probability Pdec by taking the squared

modulus of the uncoupled states coefficients with p ≥ 1 in the total wavefunction Ψpol, i.e.

dn,p≥1:

Pdec =
∑

p≥1,n

|dn,p|2
∆t

τ
. (56)

Here, ∆t is the integration time step and τ is the cavity lifetime, namely the inverse of the

cavity decay rate κ. We generate a uniform random number within the interval [0, 1]. If the

random number falls in ]Pdec, 1], the photon is retained and the cavity loss does not occur.

If not, the photon is lost. Upon photon loss, the photon occupation number is lowered by 1
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via application of the projector P̂ which includes the photon annihilation operator b̂:

P̂Ψpol =
(

Iel ⊗ b̂
)

Ψpol =
∑

n

pmax
∑

p=1

dn,p−1

√
p|n, p− 1〉. (57)

Here, the projector P̂ preserves the electronic coherence within each p subspace, apart of

course for p = 1 that is sent to 0. The photonic annihilation operator b̂ is applied to mimic

the loss of the photon from the cavity, resulting in a manifold of states with photon number

lowered by one. The wavefunction is normalized after application of P.

To re-initialize the dynamics after the photon loss has occurred, we need both the wavefunc-

tion to propagate and a polaritonic surface to resume the nuclear trajectory integration, |F 〉.
The wavefunction is simply a linear combination of polaritonic states |A〉:

Ψ′
pol = P̂Ψpol =

∑

A

C ′
A|A〉, (58)

where the ′ sybmol denotes the quantities after the jump. As a polaritonic energy surface

to resume the nuclear traectory propagation, we choose the polaritonic surface |F 〉 that has
the maximum overlap with the polaritonic wavefunction after the jump:

|F 〉 = |A〉
∣

∣

∣

∣

∣

max
{

|〈A|Ψ′
pol〉|

}

. (59)

If the quantum jump does not occur, the wavefunction is propagated with the non-

Hermitian Hamiltonian69,73,78:

Ĥeff = Ĥpol − i
κ

2
b̂†b̂. (60)

For each timestep, this is accomplished by first propagating according to Hpol, and then

modifying Ψpol in the following way

Ψpol =
∑

A

∑

n,p

CADA
n,p(1− i

κ

2
p)|n, p〉. (61)

The polaritonic wavefunction Ψpol is then renormalized. The propagation between each

attempted jump should be performed with the non hermitian Ĥeff of eq. 60, leading to

unnormalized wavefunction. Anyway, in our alghorithm the jump is attempted at each time

step and so the wavefunction is always normalized, one way or the other. A consequence of
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the photon loss is that the total energy of the system is not conserved.

In Figure 4, we replicate the dynamics performed for the lossless case (Figure 3) in

presence of a cavity lifetime τ of 65 fs. The same color scheme and notation is applied.

While the relaxation dynamics is of course quicker (Figure 4a) due to the presence of an extra

relaxation channel (cavity loss), the decay dynamics is better described by a biexponential

function, rather than a simple exponential (Figure 4b).

The main reason is that photons can be exchanged back and forth between the cavity and

the molecule, via transitions |n, p〉 → |n+ 1, p− 1〉 and vice-versa, slowing down the cavity

loss rate. This is especially important when p = 1, as there is no way to lose the photon

from a state |n′, 0〉 with zero free photons in the cavity. In particular, this happens for the

system considered here, which shows transitions back and forth from |S1, 0〉 to |S0, 1〉. Here,
the single photon remaining appears to decay with a lifetime which is 20 fs longer than the

nominal decay time of the cavity. Notice that, if the single photon remaining is adsorbed by

the molecule due to strong coupling, the lifetime of the system is ascribable to that of the

pure electronic states. Conversely, when the photon is free within the cavity, the lifetime of

the system becomes that of the nominal cavity lifetime.

The consequence of the cavity losses becomes also evident in the energy conservation

plot (Figure 4c), where the initial part of the dynamics is characterized by a quick drop of

the total energy due to the photon losses with no kinetic energy compensation. As a last

remark, we stress that the current implementation takes advantage of dressing the chemical

quantities for the strong coupling effect. Consequently, it directly supports the interface

with the TINKER package to perform QM/MM simulations with electrostatic embedding,

as described and applied in refs.35,62,63.

CONCLUSIONS

In the present work, we describe a scheme we have implemented to perform direct nonadi-

abatic molecular dynamics simulations for semiclassical molecules in strong coupling, based

on classical nuclear trajectoris and on multiconfigurational wavefunctions. We build polari-

21



tonic states and present the evaluation of analytical the gradients for polaritonic CI ener-

gies, extending the Direct Trajectory Surface Hopping (DTSH) machinery to the polaritonic

systems. Among the DTSH43,44,59 exploitable features we count the decoherence correc-

tions60, the QM/MM interface with electrostatic embedding61,63 and the local diabatization

scheme49,64 for wavefunction propagation. Cavity losses are included in the simulations

through quantum jumps, relying on the stochastic nature of Surface Hopping. We choose

the test case to highlight the complex features of the potential energy surfaces arising when

moving beyond the one-dimensional 2-level molecular models. The results presented for the

test dynamics highlight the delicate interplay between radiative and non-radiative emissions,

both impacting the relaxation dynamics of strongly coupled systems. Especially, we show

that losses are competitive with usual non-adiabatic events and that the outcoming dynamics

cannot be described as simply dissipative, the photon actually living longer than the nominal

lifetime of the cavity. The content of this work provides both formal and conceptual tools to

approach the polaritonic photochemical simulations within a semiclassical ansatz, allowing

to simulate complete photochemical reactions with a trivially parallelizable technique.
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Figure 1: Polaritonic crossing seams for weak to ultrastrong values of E1ph —

a) Polaritonic PESs along the NNC coordinate with CNNC fixed at 175◦, relaxing all the

other degrees of freedom and including multiple states and counter-rotating terms. The field

polarization λ‖ is taken parallel to the longitudinal axis of the molecule. Although values

of E1ph >= 0.005 au (< 7 nm3 mode volume) can actually be reached through single-atom

hotspots55,56, b) a drastic effect on the PESs shape is observed also for intermediate values of

E1ph, ranging from 0.002 au (∼ 46 nm3 mode volume) to 0.004 au (∼ 12 nm3 mode volume),

resulting in the seam shifting up to 3-4◦ along the NNC coordinate. In both panels, the

dotted-dashed lines label purely electronic states (no strong coupling).

Figure 2: Polaritonic conical intersection for weak to ultrastrong values of E1ph,
with the field polarization perpendicular to the longitudinal axis of the molecule

— a) Polaritonic states computed along the NNC coordinate in the same conditions as

in Figure 1a. The polarization of the field λ⊥ is perpendicular to the longitudinal axis of

the molecule. Along this direction, the vanishing S0 → S1 transition dipole moment at

azobenzene trans-planar geometries (CNNC∼ 175 − 180◦) causes b) a polaritonic conical

intersection to arise, independently of the coupling strength.

Figure 3: Photon statistics and energy conservation— a) Dynamics of the photons

in the cavity during the internal relaxation of the strongly-coupled azobenzene molecule, in

absence of cavity losses. The dynamics is starting from the |R8〉 state and running for 1

ps, with E1ph = 0.004 au (∼ 12 nm3 mode volume), ωph = 2.7 eV and longitudinal field

polarization. The molecule is in gas phase24. The curves with full lines show the dynamics

of each p subspace, while the light blue line with circle markers (with the scale on the

right) represents the total photon number within the cavity. Error bars, represented as

lighter bands, are also shown. Even in absence of cavity losses, the average photon number

decreases during the dynamics. While the photon is in its absorbed state, the energy stored

within the molecule is redistributed via internal conversion to nuclear kinetic energy. The

overall process is still conserving the energy, as shown in panel b).
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Figure 4: Cavity losses in strong coupling— Same conditions of Figure 3, with the

same notation and color scheme. A cavity lifetime τ = 65 fs is considered. a) The overall

population dynamics is definitely shorter in this case, with a transient population of the

|n, 1〉 subspace. b) Photon number in the cavity at each time step. Remarkably, the kinetics

is not simply dissipative. While p ≥ 1, the photon loss occurs at a faster rate than the cavity

lifetime (circle markers fit). After only one photon remains, the loss dynamics slows down,

as the only photon remaining is partially absorbed by the molecule and cannot be lost. c)

Breakdown of the energy conservation, due to cavity losses.
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