110 research outputs found

    Quantum Monte Carlo simulations in the trimer basis:First-order transitions and thermal critical points in frustrated trilayer magnets

    Get PDF
    The phase diagrams of highly frustrated quantum spin systems can exhibit first-order quantum phase transitions and thermal critical points even in the absence of any long-ranged magnetic order. However, all unbiased numerical techniques for investigating frustrated quantum magnets face significant challenges, and for generic quantum Monte Carlo methods the challenge is the sign problem. Here we report on a general quantum Monte Carlo approach with a loop-update scheme that operates in any basis, and we show that, with an appropriate choice of basis, it allows us to study a frustrated model of coupled spin-1/2 trimers: simulations of the trilayer Heisenberg antiferromagnet in the spin-trimer basis are sign-problem-free when the intertrimer couplings are fully frustrated. This model features a first-order quantum phase transition, from which a line of first-order transitions emerges at finite temperatures and terminates in a thermal critical point. The trimer unit cell hosts an internal degree of freedom that can be controlled to induce an extensive entropy jump at the quantum transition, which alters the shape of the first-order line. We explore the consequences for the thermal properties in the vicinity of the critical point, which include profound changes in the lines of maxima defined by the specific heat. Our findings reveal trimer quantum magnets as fundamental systems capturing in full the complex thermal physics of the strongly frustrated regime.Comment: 27 pages, 10 figures, Resubmission to SciPos

    Thermodynamic properties of the Shastry-Sutherland model from quantum Monte Carlo simulations

    Get PDF
    We investigate the minus-sign problem that afflicts quantum Monte Carlo (QMC) simulations of frustrated quantum spin systems, focusing on spin S=1/2, two spatial dimensions, and the extended Shastry-Sutherland model. We show that formulating the Hamiltonian in the diagonal dimer basis leads to a sign problem that becomes negligible at low temperatures for small and intermediate values of the ratio of the inter- and intradimer couplings. This is a consequence of the fact that the product state of dimer singlets is the exact ground state both of the extended Shastry-Sutherland model and of a corresponding "sign-problem-free" model, obtained by changing the signs of all positive off-diagonal matrix elements in the dimer basis. By exploiting this insight, we map the sign problem throughout the extended parameter space from the Shastry-Sutherland to the fully frustrated bilayer model and compare it with the phase diagram computed by tensor-network methods. We use QMC to compute with high accuracy the temperature dependence of the magnetic specific heat and susceptibility of the Shastry-Sutherland model for large systems up to a coupling ratio of 0.526(1) and down to zero temperature. For larger coupling ratios, our QMC results assist us in benchmarking the evolution of the thermodynamic properties by systematic comparison with exact diagonalization calculations and interpolated high-temperature series expansions.Comment: 13 pages including 10 figures; published version with minor changes and correction

    Entanglement Entropy of Random Fractional Quantum Hall Systems

    Full text link
    The entanglement entropy of the ν=1/3\nu = 1/3 and ν=5/2\nu = 5/2 quantum Hall states in the presence of short range random disorder has been calculated by direct diagonalization. A microscopic model of electron-electron interaction is used, electrons are confined to a single Landau level and interact with long range Coulomb interaction. For very weak disorder, the values of the topological entanglement entropy are roughly consistent with expected theoretical results. By considering a broader range of disorder strengths, the fluctuation in the entanglement entropy was studied in an effort to detect quantum phase transitions. In particular, there is a clear signature of a transition as a function of the disorder strength for the ν=5/2\nu = 5/2 state. Prospects for using the density matrix renormalization group to compute the entanglement entropy for larger system sizes are discussed.Comment: 29 pages, 16 figures; fixed figures and figure captions; revised fluctuation calculation

    Comment on "Topological quantum phase transitions of attractive spinless fermions in a honeycomb lattice" by Poletti D. et al

    Full text link
    In a recent letter [D. Poletti et al., EPL 93, 37008 (2011)] a model of attractive spinless fermions on the honeycomb lattice at half filling has been studied by mean-field theory, where distinct homogenous phases at rather large attraction strength V>3.36V>3.36, separated by (topological) phase transitions, have been predicted. In this comment we argue that without additional interactions the ground states in these phases are not stable against phase separation. We determine the onset of phase separation at half filling Vps1.7V_{ps}\approx 1.7 by means of infinite projected entangled-pair states (iPEPS) and exact diagonalization.Comment: 2 pages, 1 figur

    Tensor network states and geometry

    Full text link
    Tensor network states are used to approximate ground states of local Hamiltonians on a lattice in D spatial dimensions. Different types of tensor network states can be seen to generate different geometries. Matrix product states (MPS) in D=1 dimensions, as well as projected entangled pair states (PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the lattice model; in contrast, the multi-scale entanglement renormalization ansatz (MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on homogeneous tensor networks, where all the tensors in the network are copies of the same tensor, and argue that certain structural properties of the resulting many-body states are preconditioned by the geometry of the tensor network and are therefore largely independent of the choice of variational parameters. Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for D=1 systems is seen to be determined by the structure of geodesics in the physical and holographic geometries, respectively; whereas the asymptotic scaling of entanglement entropy is seen to always obey a simple boundary law -- that is, again in the relevant geometry. This geometrical interpretation offers a simple and unifying framework to understand the structural properties of, and helps clarify the relation between, different tensor network states. In addition, it has recently motivated the branching MERA, a generalization of the MERA capable of reproducing violations of the entropic boundary law in D>1 dimensions.Comment: 18 pages, 18 figure

    Many body physics from a quantum information perspective

    Full text link
    The quantum information approach to many body physics has been very successful in giving new insight and novel numerical methods. In these lecture notes we take a vertical view of the subject, starting from general concepts and at each step delving into applications or consequences of a particular topic. We first review some general quantum information concepts like entanglement and entanglement measures, which leads us to entanglement area laws. We then continue with one of the most famous examples of area-law abiding states: matrix product states, and tensor product states in general. Of these, we choose one example (classical superposition states) to introduce recent developments on a novel quantum many body approach: quantum kinetic Ising models. We conclude with a brief outlook of the field.Comment: Lectures from the Les Houches School on "Modern theories of correlated electron systems". Improved version new references adde

    A quantum magnetic analogue to the critical point of water

    Full text link
    At the familiar liquid-gas phase transition in water, the density jumps discontinuously at atmospheric pressure, but the line of these first-order transitions defined by increasing pressures terminates at the critical point, a concept ubiquitous in statistical thermodynamics. In correlated quantum materials, a critical point was predicted and measured terminating the line of Mott metal-insulator transitions, which are also first-order with a discontinuous charge density. In quantum spin systems, continuous quantum phase transitions (QPTs) have been investigated extensively, but discontinuous QPTs have received less attention. The frustrated quantum antiferromagnet SrCu2_2(BO3_3)2_2 constitutes a near-exact realization of the paradigmatic Shastry-Sutherland model and displays exotic phenomena including magnetization plateaux, anomalous thermodynamics and discontinuous QPTs. We demonstrate by high-precision specific-heat measurements under pressure and applied magnetic field that, like water, the pressure-temperature phase diagram of SrCu2_2(BO3_3)2_2 has an Ising critical point terminating a first-order transition line, which separates phases with different densities of magnetic particles (triplets). We achieve a quantitative explanation of our data by detailed numerical calculations using newly-developed finite-temperature tensor-network methods. These results open a new dimension in understanding the thermodynamics of quantum magnetic materials, where the anisotropic spin interactions producing topological properties for spintronic applications drive an increasing focus on first-order QPTs.Comment: 8+4 pages, 4+3 figure

    Study of solid 4He in two dimensions. The issue of zero-point defects and study of confined crystal

    Full text link
    Defects are believed to play a fundamental role in the supersolid state of 4He. We report on studies by exact Quantum Monte Carlo (QMC) simulations at zero temperature of the properties of solid 4He in presence of many vacancies, up to 30 in two dimensions (2D). In all studied cases the crystalline order is stable at least as long as the concentration of vacancies is below 2.5%. In the 2D system for a small number, n_v, of vacancies such defects can be identified in the crystalline lattice and are strongly correlated with an attractive interaction. On the contrary when n_v~10 vacancies in the relaxed system disappear and in their place one finds dislocations and a revival of the Bose-Einstein condensation. Thus, should zero-point motion defects be present in solid 4He, such defects would be dislocations and not vacancies, at least in 2D. In order to avoid using periodic boundary conditions we have studied the exact ground state of solid 4He confined in a circular region by an external potential. We find that defects tend to be localized in an interfacial region of width of about 15 A. Our computation allows to put as upper bound limit to zero--point defects the concentration 0.003 in the 2D system close to melting density.Comment: 17 pages, accepted for publication in J. Low Temp. Phys., Special Issue on Supersolid
    corecore