886 research outputs found

    TUIs vs. GUIs : comparing the learning potential with preschoolers

    Get PDF
    In an effort to better understand the learning potential of a tangible interface, we conducted a comparison study between a tangible and a traditional graphical user interface for teaching preschoolers (In Portugal, children enter preschool at the age of three and they attend it till entering school, normally at the age of six) about good oral hygiene. The study was carried with two groups of children aged 4 to 5 years. Questionnaires to parents, children’s drawings, and interviews were used for data collection and analysis and revealed important indicators about children’s change of attitude, involvement, and preferences for the interfaces. The questionnaires showed a remarkable change of attitude toward tooth brushing in the children that interacted with the tangible interface; particularly children’s motivation increased significantly. Children’s drawings were used to assess their degree of involvement with the interfaces. The drawings from the children that interacted with the tangible interface were very complete and detailed suggesting that the children felt actively involved with the experience. The results suggest that the tangible interface was capable of promoting a stronger and long-lasting involvement having a greater potential to engage children, therefore potentially promoting learning. Evaluation through drawing seems to be a promising method to work with preliterate children; however,it is advisable to use it together with other methods.Fundação para a Ciência e Tecnologia (FCT

    Percolation model for structural phase transitions in Li1−x_{1-x}Hx_xIO3_3 mixed crystals

    Full text link
    A percolation model is proposed to explain the structural phase transitions found in Li1−x_{1-x}Hx_xIO3_3 mixed crystals as a function of the concentration parameter xx. The percolation thresholds are obtained from Monte Carlo simulations on the specific lattices occupied by lithium atoms and hydrogen bonds. The theoretical results strongly suggest that percolating lithium vacancies and hydrogen bonds are indeed responsible for the solid solution observed in the experimental range 0.22<x<0.360.22 < x < 0.36.Comment: 4 pages, 2 figure

    Differential antitumor immunity mediated by NKT cell subsets in vivo

    Get PDF
    We showed previously that NKT cell–deficient TCR Jα18(−/−) mice are more susceptible to methylcholanthrene (MCA)-induced sarcomas, and that normal tumor surveillance can be restored by adoptive transfer of WT liver-derived NKT cells. Liver-derived NKT cells were used in these studies because of their relative abundance in this organ, and it was assumed that they were representative of NKT cells from other sites. We compared NKT cells from liver, thymus, and spleen for their ability to mediate rejection of the sarcoma cell line (MCA-1) in vivo, and found that this was a specialized function of liver-derived NKT cells. Furthermore, when CD4(+) and CD4(−) liver-derived NKT cells were administered separately, MCA-1 rejection was mediated primarily by the CD4(−) fraction. Very similar results were achieved using the B16F10 melanoma metastasis model, which requires NKT cell stimulation with α-galactosylceramide. The impaired ability of thymus-derived NKT cells was due, in part, to their production of IL-4, because tumor immunity was clearly enhanced after transfer of IL-4–deficient thymus-derived NKT cells. This is the first study to demonstrate the existence of functionally distinct NKT cell subsets in vivo and may shed light on the long-appreciated paradox that NKT cells function as immunosuppressive cells in some disease models, whereas they promote cell-mediated immunity in others

    Neuroprotection in a Novel Mouse Model of Multiple Sclerosis

    Get PDF
    The authors acknowledge the support of the Barts and the London Charity, the Multiple Sclerosis Society of Great Britain and Northern Ireland, the National Multiple Sclerosis Society, USA, notably the National Centre for the Replacement, Refinement & Reduction of Animals in Research, and the Wellcome Trust (grant no. 092539 to ZA). The siRNA was provided by Quark Pharmaceuticals. The funders and Quark Pharmaceuticals had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Lithium-Doped Two-Dimensional Perovskite Scintillator for Wide-Range Radiation Detection

    Get PDF
    Two-dimensional lead halide perovskites have demonstrated their potential as high-performance scintillators for X- and gamma-ray detection, while also being low-cost. Here we adopt lithium chemical doping in two-dimensional phenethylammonium lead bromide (PEA)2PbBr4 perovskite crystals to improve the properties and add functionalities with other radiation detections. Li doping is confirmed by X-ray photoemission spectroscopy and the scintillation mechanisms are explored via temperature dependent X-ray and thermoluminescence measurements. Our 1:1 Li-doped (PEA)2PbBr4 demonstrates a fast decay time of 11 ns (80%), a clear photopeak with an energy resolution of 12.4%, and a scintillation yield of 11,000 photons per MeV under 662 keV gamma-ray radiation. Additionally, our Li-doped crystal shows a clear alpha particle/gamma-ray discrimination and promising thermal neutron detection through 6Li enrichment. X-ray imaging pictures with (PEA)2PbBr4 are also presented. All results demonstrate the potential of Li-doped (PEA)2PbBr4 as a versatile scintillator covering a wide radiation energy range for various applications

    A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo

    Get PDF
    Experiments with replication-competent SARS-CoV-2 were performed in the Biomedicum BSL3 core facility, Karolinska Institutet. We thank Jonas Klingström for providing Calu-3 cells and sharing the Swedish SARS-CoV-2 isolate, and Alex Sigal from the Africa Health Research Institute for providing the beta variant (B.1.351/501Y.V2) isolate. We thank Penny Moore and the NICD (South Africa) for providing the B.1.351/beta variant spike plasmid, which was generated using funding from the South African Medical Research Council. We gratefully acknowledge the G2P-UK National Virology consortium funded by MRC/UKRI (grant ref: MR/W005611/1.) and the Barclay Lab at Imperial College for providing the B.1.617.2 spike plasmid. All cryo-EM data were collected in the Karolinska Institutet’s 3D-EM facility. We thank Agustin Ure for assistance with figure generation and Tomas Nyman (Protein Science Facility at KI) for providing access to SPR instruments. L.H. was supported by the David och Astrid Hageléns stiftelse, the Clas Groschinskys Minnesfond and a Jonas Söderquist’s scholarship. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 101003653 (CoroNAb), to B.M. and G.M.M. B.M.H. is supported by the Knut and Alice Wallenberg Foundation (KAW 2017.0080 and KAW 2018.0080). The work was supported by project grants from the Swedish Research Council to E.S. (2020-02682), B.M.H. (2017-6702 and 2018-3808), B.M. (2018-02381) and to G.M.M. (2018-03914 and 2018-03843). E.S. is supported by Karolinska Institutet Foundation Grants, National Molecular Medicine Program Grants, and the grants from the SciLifeLab National COVID-19 Research Program, financed by the Knut and Alice Wallenberg Foundation. We thank National Microscopy Infrastructure, NMI (VR-RFI 2016-00968).N
    • …
    corecore