13 research outputs found

    Predicting aboveground forest biomass with topographic variables in human-impacted tropical dry forest landscapes

    Get PDF
    Topographic variables such as slope and elevation partially explain spatial variations in aboveground biomass (AGB) within landscapes. Human activities that impact vegetation, such as cattle grazing and shifting cultivation, often follow topographic features and also play a key role in determining AGB patterns, although these effects may be moderated by accessibility. In this study, we evaluated the potential to predict AGB in a rural landscape, using a set of topographical variables in combination with indicators of accessibility. We modeled linear and non-linear relationships between AGB, topographic variables within the territorial boundaries of six rural communities, and distance to roads. Linear models showed that elevation, slope, topographic wetness index, and tangential curvature could explain up to 21% of AGB. Non-linear models found threshold values for the relationship between AGB and diffuse insolation, topographic position index at 19 × 19 pixels scale and differentiated between groups of communities, improving AGB predictions to 33%. We also found a continuous and positive effect on AGB with increased distance from roads, but also a piecewise relationship that improves the understanding of intensity of human activities. These findings could enable AGB baselines to be constructed at landscape level using freely available data from topographic maps. Such baselines may be of use in national programs under the international policy Reducing Emissions from Deforestation and Forest Degradation

    Biodiversity Loss in Latin American Coffee Landscapes: Review of the Evidence on Ants, Birds, and Trees

    Full text link
    Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions. We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee-management systems compared with forests? Is species loss greater for forest species or for particular functional groups? and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee (grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted, and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade-offs between biodiversity conservation and farmer livelihoods stemming from coffee production.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74576/1/j.1523-1739.2008.01029.x.pd

    Private property and Mennonites are major drivers of forest cover loss in central Yucatan Peninsula, Mexico

    No full text
    corecore