138 research outputs found

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites

    Feeding restriction impairs milk yield and physicochemical properties rendering it less suitable for sale

    Full text link
    Feed shortages are relatively frequent in subtropical pasture-based dairy production systems. The effect of feed restriction on milk yield and physical-chemical traits was evaluated in this study. The experiment was carried out in Brazil’s south region. Treatments consisted of control and restricted diet. Six multiparous and six primiparous cows, with 499 ± 47.20 kg body weight (BW), at mid-lactation (188 ± 124 days in milk), producing 19.35 ± 4.10 kg of milk were assigned to two groups, balanced for parity, each group receiving a different sequence of the dietary treatments for 56 days, in a crossover design. Diet nominated as control included 8 kg DM 100 kg BW–1 of Bermuda grass var. Tifton pasture (Cynodon dactylon (L.) Pers.), 5.00 kg of concentrate and 2.50 kg of Tifton hay per day. The restriction diet consisted of 50 % of the quantity offered in the control diet. Milk production and physicochemical composition were evaluated. Feed restriction reduced milk production by 40 %, body condition score by 5 %, milk magnesium by 14.3 %, lactose by 1.7 %, titratable acidity by 10 % and stability to the ethanol test by 9 % and it tended to increase (7 %) milk potassium content. No changes were found for the remaining characteristics. Since feed restriction is quite frequent in Brazil’s extensive dairy production systems, our concern is that besides decreased milk production, changes can occur in the physiochemical attributes of the milk, mainly a reduction in the stability to the ethanol test, which may increase the volume of milk rejected by the industry
    corecore