635 research outputs found

    The personal belief in a just world and domain-specific beliefs about justice at school and in the family: A longitudinal study with adolescents

    Get PDF
    This article investigates the relationship between the personal belief in a just world (BJW) and domain-specific beliefs about justice and examines how justice cognitions impact on adolescents' development, particularly on their achievement at school and their subjective well-being. A longitudinal questionnaire study with German adolescents aged 14-19 years was conducted over a period of five to eight months. The pattern of results revealed that evaluations of the school climate and of the family climate as being just were two distinct phenomena, both of which impacted on the personal BJW, which in turn affected the domain-specific beliefs about justice. However, the domain-specific beliefs about justice did not impact on each other directly. Moreover, an evaluation of the family climate (but not of the school climate) as being just reduced depressive symptoms, whereas depressive symptoms did not weaken the evaluation of one's family as being just. The evaluation of the school climate as being just improved the grades received in the next school report, whereas the grades received did not affect the justice evaluation of the school climate. Finally, all relationships persisted when controlling for age and gender. In sum, the pattern of findings supports the notion that justice cognitions impact on development during adolescence

    The spin and charge gaps of the half-filled N-leg Kondo ladders

    Full text link
    In this work, we study N-leg Kondo ladders at half-filling through the density matrix renormalization group. We found non-zero spin and charge gaps for any finite number of legs and Kondo coupling J>0J>0. We also show evidence of the existence of a quantum critical point in the two dimensional Kondo lattice model, in agreement with previous works. Based on the binding energy of two holes, we did not find evidence of superconductivity in the 2D Kondo lattice model close to half-filling.Comment: 4 pages, 1 table, 3 fig

    No-Hair Theorem for Spontaneously Broken Abelian Models in Static Black Holes

    Get PDF
    The vanishing of the electromagnetic field, for purely electric configurations of spontaneously broken Abelian models, is established in the domain of outer communications of a static asymptotically flat black hole. The proof is gauge invariant, and is accomplished without any dependence on the model. In the particular case of the Abelian Higgs model, it is shown that the only solutions admitted for the scalar field become the vacuum expectation values of the self-interaction.Comment: 8 pages, 2 figures, RevTeX; some changes to match published versio

    Revised Phase Diagram of the Gross-Neveu Model

    Get PDF
    We confirm earlier hints that the conventional phase diagram of the discrete chiral Gross-Neveu model in the large N limit is deficient at non-zero chemical potential. We present the corrected phase diagram constructed in mean field theory. It has three different phases, including a kink-antikink crystal phase. All transitions are second order. The driving mechanism for the new structure of baryonic matter in the Gross-Neveu model is an Overhauser type instability with gap formation at the Fermi surface.Comment: Revtex, 12 pages, 15 figures; v2: Axis labelling in Fig. 9 correcte

    Small Fermi surface in the one-dimensional Kondo lattice model

    Get PDF
    We study the one-dimensional Kondo lattice model through the density matrix renormalization group (DMRG). Our results for the spin correlation function indicate the presence of a small Fermi surface in large portions of the phase diagram, in contrast to some previous studies that used the same technique. We argue that the discrepancy is due to the open boundary conditions, which introduce strong charge perturbations that strongly affect the spin Friedel oscillations.Comment: 5 pages, 7 figure

    Gauged Lifshitz scalar field theories in two dimensions

    Full text link
    We present two-dimensional gauged Lifshitz scalar field theories by considering the duality relation between the source current and the Noether current. Requiring the duality partially, we obtain a gauged model which recovers the bosonized Schwinger model for the IR limit. For the exact duality, however, the source current is not conserved, which means that the resulting theory is anomalous, so that the number of degrees of freedom is increased. The second model is consistently formulated by adding the Wess-Zumino type action to maintain the gauge invariance.Comment: 11 page

    Fluctuations and Instabilities of Ferromagnetic Domain Wall pairs in an External Magnetic Field

    Full text link
    Soliton excitations and their stability in anisotropic quasi-1D ferromagnets are analyzed analytically. In the presence of an external magnetic field, the lowest lying topological excitations are shown to be either soliton-soliton or soliton-antisoliton pairs. In ferromagnetic samples of macro- or mesoscopic size, these configurations correspond to twisted or untwisted pairs of Bloch walls. It is shown that the fluctuations around these configurations are governed by the same set of operators. The soliton-antisoliton pair has exactly one unstable mode and thus represents a critical nucleus for thermally activated magnetization reversal in effectively one-dimensional systems. The soliton-soliton pair is stable for small external fields but becomes unstable for large magnetic fields. From the detailed expression of this instability threshold and an analysis of nonlocal demagnetizing effects it is shown that the relative chirality of domain walls can be detected experimentally in thin ferromagnetic films. The static properties of the present model are equivalent to those of a nonlinear sigma-model with anisotropies. In the limit of large hard-axis anisotropy the model reduces to a double sine-Gordon model.Comment: 15 pages RevTex 3.0 (twocolumn), 9 figures available on request, to appear in Phys Rev B, Dec (1994

    Scalar hairy black holes and solitons in asymptotically flat spacetimes

    Get PDF
    A numerical analysis shows that a class of scalar-tensor theories of gravity with a scalar field minimally and nonminimally coupled to the curvature allows static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. In the limit when the horizon radius of the black hole tends to zero, regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential V(Ď•)V(\phi) of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations for the minimal coupling case, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture. For the nonminimal coupling case, the stability will be analyzed in a forthcoming paper.Comment: 7 pages, 10 postscript figures, file tex, new postscript figs. and references added, stability analysis revisite

    Superfluidity of a perfect quantum crystal

    Full text link
    In recent years, experimental data were published which point to the possibility of the existence of superfluidity in solid helium. To investigate this phenomenon theoretically we employ a hierarchy of equations for reduced density matrices which describes a quantum system that is in thermodynamic equilibrium below the Bose-Einstein condensation point, the hierarchy being obtained earlier by the author. It is shown that the hierarchy admits solutions relevant to a perfect crystal (immobile) in which there is a frictionless flow of atoms, which testifies to the possibility of superfluidity in ideal solids. The solutions are studied with the help of the bifurcation method and some their peculiarities are found out. Various physical aspects of the problem, among them experimental ones, are discussed as well.Comment: 24 pages with 2 figures, version accepted for publication in Eur.Phys.J.

    Differential metabolism of deoxyribonucleosides by leukaemic T cells of immature and mature phenotype

    Full text link
    Experimental evidence has indicated that T lymphoblasts are more sensitive to deoxynucleoside toxicity than are B lymphoblasts. These data have led to the use of purine enzyme inhibitors as selective chemotherapeutic drugs in the treatment of T cell malignancies ranging from T cell acute lymphoblastic leukaemia to cutaneous T cell lymphomas. We have compared the toxicities of 2′-deoxyadenosine, 2′-deoxyguanosine, and thymidine for T cell lines derived from patients with T cell acute lymphoblastic leukaemia with those for mature T cell lines derived from patients with cutaneous T cell leukaemia/lymphoma. We have found that both deoxynucleosides are far less toxic to the mature T cell lies than to T lymphoblasts and that the mature cells accumulate much lower amounts of dATP and dGTP when exposed to deoxyadenosine and deoxyguanosine, respectively. Similar studies performed on peripheral blood cells from patients with T cell leukaemias of mature phenotype and on peripheral blood T cells demonstrate similar low amounts of deoxynucleotide accumulation. Measurements of the activities of several purine metabolizing enzymes that participate in deoxynucleoside phosphorylation or degradation do not reveal differences which would explain the toxicity of deoxynucleosides for immature, as compared to mature, T cells. We conclude that deoxynucleoside metabolism in leukaemic T cells varies with their degree of differentiation. These observations may be relevant to the design of chemotherapeutic regimes for T cell malignancies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72479/1/j.1365-2141.1985.tb04067.x.pd
    • …
    corecore