93 research outputs found
Targeted antitumour therapy – future perspectives
The advent of targeted therapy presents an unprecedented opportunity for advances in the treatment of cancer. A key challenge will be to translate the undoubted promise of targeted agents into tangible clinical benefits. Achieving this goal is likely to be dependent upon a number of factors. These include continued research to improve our understanding of the heterogeneity and complexity of the tumour microenvironment; refinement of clinical trial design to incorporate nontraditional end points such as the optimum biological dose and health-related quality of life; and the use of technological advancements in proteomics, genomics and biomarker development to better predict tumour types and patient subsets that may be particularly responsive to treatment, as well as enable a more accurate assessment of drug effect at the molecular level. In summary, the future success of targeted agents will require an integrated multidisciplinary approach involving all stakeholders
Pharmacokinetics and metabolism of 13-cis-retinoic acid (isotretinoin) in children with high-risk neuroblastoma – a study of the United Kingdom Children's Cancer Study Group
The administration of 13-cis-retinoic acid (13-cisRA), following myeloablative therapy improves 3-year event-free survival rates in children with high-risk neuroblastoma. This study aimed to determine the degree of inter-patient pharmacokinetic variation and extent of metabolism in children treated with 13-cisRA. 13-cis-retinoic acid (80 mg m−2 b.d.) was administered orally and plasma concentrations of parent drug and metabolites determined on days 1 and 14 of courses 2, 4 and 6 of treatment. Twenty-eight children were studied. The pharmacokinetics of 13-cisRA were best described by a modified one-compartment, zero-order absorption model combined with lag time. Mean population pharmacokinetic parameters included an apparent clearance of 15.9 l h−1, apparent volume of distribution of 85 l and absorption lag time of 40 min with a large inter-individual variability associated with all parameters (coefficients of variation greater than 50%). Day 1 peak 13-cisRA levels and exposure (AUC) were correlated with method of administration (P<0.02), with 2.44- and 1.95-fold higher parameter values respectively, when 13-cisRA capsules were swallowed as opposed to being opened and the contents mixed with food before administration. Extensive accumulation of 4-oxo-13-cisRA occurred during each course of treatment with plasma concentrations (mean±s.d. 4.67±3.17 μM) higher than those of 13-cisRA (2.83±1.44 μM) in 16 out of 23 patients on day 14 of course 2. Extensive metabolism to 4-oxo-13-cisRA may influence pharmacological activity of 13-cisRA
Method validation and preliminary qualification of pharmacodynamic biomarkers employed to evaluate the clinical efficacy of an antisense compound (AEG35156) targeted to the X-linked inhibitor of apoptosis protein XIAP
Data are presented on pharmacodynamic (PD) method validation and preliminary clinical qualification of three PD biomarker assays. M65 Elisa, which quantitates different forms of circulating cytokeratin 18 (CK18) as putative surrogate markers of both apoptotic and nonapoptotic tumour cell death, was shown to be highly reproducible: calibration curve linearity r2=0.996, mean accuracy >91% and mean precision <3%, n=27. Employing recombinant (r) CK18 and caspase cleaved CK18 (CK18 Asp396 neo-epitope) as external standards, kit to kit reproducibly was <6% (n=19). rCK18 was stable in plasma for 4 months at −20°C and −80°C, for 4 weeks at 4°C and had a half-life of 2.3 days at 37°C. Cytokeratin 18 Asp396 NE, the M30 Apoptosense Elisa assay antigen, was stable in plasma for 6 months at −20°C and −80°C, for 3 months at 4°C, while its half-life at 37°C was 3.8 days. Within-day variations in endogenous plasma concentrations of the M30 and M65 antigens were assessed in two predose blood samples collected from a cohort of 15 ovarian cancer patients receiving carboplatin chemotherapy and were shown to be no greater than the variability associated with methods themselves. Between-day fluctuations in circulating levels of the M30 and M65 antigens and in XIAP mRNA levels measured in peripheral blood mononuclear cells by quantitative (q) RT–PCR were evaluated in two predose blood samples collected with a 5- to 7-day gap from 23 patients with advanced cancer enrolled in a phase I trial. The mean variation between the two pretreatment values ranged from 13 to 14 to 25%, respectively, for M65, M30 and qRT–PCR. These data suggest that the M30 and M65 Elisa's and qRT–PCR as PD biomarker assays have favourable performance characteristics for further investigation in clinical trials of anticancer agents which induce tumour apoptosis/necrosis or knockdown of the anti-apoptotic protein XIAP
Useful pharmacodynamic endpoints in children: selection, measurement, and next steps.
Pharmacodynamic (PD) endpoints are essential for establishing the benefit-to-risk ratio for therapeutic interventions in children and neonates. This article discusses the selection of an appropriate measure of response, the PD endpoint, which is a critical methodological step in designing pediatric efficacy and safety studies. We provide an overview of existing guidance on the choice of PD endpoints in pediatric clinical research. We identified several considerations relevant to the selection and measurement of PD endpoints in pediatric clinical trials, including the use of biomarkers, modeling, compliance, scoring systems, and validated measurement tools. To be useful, PD endpoints in children need to be clinically relevant, responsive to both treatment and/or disease progression, reproducible, and reliable. In most pediatric disease areas, this requires significant validation efforts. We propose a minimal set of criteria for useful PD endpoint selection and measurement. We conclude that, given the current heterogeneity of pediatric PD endpoint definitions and measurements, both across and within defined disease areas, there is an acute need for internationally agreed, validated, and condition-specific pediatric PD endpoints that consider the needs of all stakeholders, including healthcare providers, policy makers, patients, and families.Pediatric Research advance online publication, 11 April 2018; doi:10.1038/pr.2018.38
Literature Mining for the Discovery of Hidden Connections between Drugs, Genes and Diseases
The scientific literature represents a rich source for retrieval of knowledge on associations between biomedical concepts such as genes, diseases and cellular processes. A commonly used method to establish relationships between biomedical concepts from literature is co-occurrence. Apart from its use in knowledge retrieval, the co-occurrence method is also well-suited to discover new, hidden relationships between biomedical concepts following a simple ABC-principle, in which A and C have no direct relationship, but are connected via shared B-intermediates. In this paper we describe CoPub Discovery, a tool that mines the literature for new relationships between biomedical concepts. Statistical analysis using ROC curves showed that CoPub Discovery performed well over a wide range of settings and keyword thesauri. We subsequently used CoPub Discovery to search for new relationships between genes, drugs, pathways and diseases. Several of the newly found relationships were validated using independent literature sources. In addition, new predicted relationships between compounds and cell proliferation were validated and confirmed experimentally in an in vitro cell proliferation assay. The results show that CoPub Discovery is able to identify novel associations between genes, drugs, pathways and diseases that have a high probability of being biologically valid. This makes CoPub Discovery a useful tool to unravel the mechanisms behind disease, to find novel drug targets, or to find novel applications for existing drugs
Central auditory masking by an illusory tone
Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated) between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners
Practical implications for the administration of 13-cis retinoic acid in pediatric oncology
Children with high-risk neuroblastoma are treated with polychemotherapy, surgery, radiotherapy and even autologous stem-cell transplantation. On top of this complex treatment, most children also receive 13-cis retinoic acid as differentiation agent. As no suitable pharmaceutical formulation is available so far, there are often problems with the administration of the product in children. The present report describes some practical recommendations for the administration of isotretinoin in children treated for high-risk neuroblastoma
- …