30 research outputs found

    Anaerobic Respiration of \u3cem\u3eEscherichia coli\u3c/em\u3e in the Mouse Intestine

    Get PDF
    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in the intestine

    Glycogen and Maltose Utilization by \u3cem\u3eEscherichia coli\u3c/em\u3e O157:H7 in the Mouse Intestine

    Get PDF
    Mutant screens and transcriptome studies led us to consider whether the metabolism of glucose polymers, i.e., maltose, maltodextrin, and glycogen, is important for Escherichia coli colonization of the intestine. By using the streptomycin-treated mouse model, we found that catabolism of the disaccharide maltose provides a competitive advantage in vivo to pathogenic E. coli O157:H7 and commensal E. coli K-12, whereas degradation of exogenous forms of the more complex glucose polymer, maltodextrin, does not. The endogenous glucose polymer, glycogen, appears to play an important role in colonization, since mutants that are unable to synthesize or degrade glycogen have significant colonization defects. In support of the hypothesis that E. coli relies on internal carbon stores to maintain colonization during periods of famine, we found that by providing a constant supply of a readily metabolized sugar, i.e., gluconate, in the animal\u27s drinking water, the competitive disadvantage of E. coli glycogen metabolism mutants is rescued. The results suggest that glycogen storage may be widespread in enteric bacteria because it is necessary for maintaining rapid growth in the intestine, where there is intense competition for resources and occasional famine. An important implication of this study is that the sugars used by E. coli are present in limited quantities in the intestine, making endogenous carbon stores valuable. Thus, there may be merit to combating enteric infections by using probiotics or prebiotics to manipulate the intestinal microbiota in such a way as to limit the availability of sugars preferred by E. coli O157:H7 and perhaps other pathogens

    LILAC pilot study : effects of metformin on mTOR activation and HIV reservoir persistence during antiretroviral therapy

    Get PDF
    Background: Chronic inflammation and residual HIV transcription persist in people living with HIV (PLWH) receiving antiretroviral therapy (ART), thus increasing the risk of developing non-AIDS co-morbidities. The mechanistic target of rapamycin (mTOR) is a key regulator of cellular metabolism and HIV transcription, and therefore represents an interesting novel therapeutic target. Methods: The LILAC pilot clinical trial, performed on non-diabetic ART-treated PLWH with CD4+ /CD8+ T-cell ratios <0.8, evaluated the effects of metformin (12 weeks oral administration; 500-850 mg twice daily), an indirect mTOR inhibitor, on the dynamics of immunological/virological markers and changes in mTOR activation/phosphorylation in blood collected at Baseline, Week 12, and 12 weeks after metformin discontinuation (Week 24) and sigmoid colon biopsies (SCB) collected at Baseline and Week 12. Findings: CD4+ T-cell counts, CD4+ /CD8+ T-cell ratios, plasma markers of inflammation/gut damage, as well as levels of cell-associated integrated HIV-DNA and HIV-RNA, and transcriptionally-inducible HIV reservoirs, underwent minor variations in the blood in response to metformin. The highest levels of mTOR activation/ phosphorylation were observed in SCB at Baseline. Consistently, metformin significantly decreased CD4+ Tcell infiltration in the colon, as well as mTOR activation/phosphorylation, especially in CD4+ T-cells expressing the Th17 marker CCR6. Also, metformin decreased the HIV-RNA/HIV-DNA ratios, a surrogate marker of viral transcription, in colon-infiltrating CD4+ T-cells of 8/13 participants

    Anaerobic Respiration of Escherichia coli in the Mouse Intestine â–¿

    Get PDF
    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in the intestine

    Glycogen and Maltose Utilization by Escherichia coli O157:H7 in the Mouse Intestineâ–¿

    Get PDF
    Mutant screens and transcriptome studies led us to consider whether the metabolism of glucose polymers, i.e., maltose, maltodextrin, and glycogen, is important for Escherichia coli colonization of the intestine. By using the streptomycin-treated mouse model, we found that catabolism of the disaccharide maltose provides a competitive advantage in vivo to pathogenic E. coli O157:H7 and commensal E. coli K-12, whereas degradation of exogenous forms of the more complex glucose polymer, maltodextrin, does not. The endogenous glucose polymer, glycogen, appears to play an important role in colonization, since mutants that are unable to synthesize or degrade glycogen have significant colonization defects. In support of the hypothesis that E. coli relies on internal carbon stores to maintain colonization during periods of famine, we found that by providing a constant supply of a readily metabolized sugar, i.e., gluconate, in the animal's drinking water, the competitive disadvantage of E. coli glycogen metabolism mutants is rescued. The results suggest that glycogen storage may be widespread in enteric bacteria because it is necessary for maintaining rapid growth in the intestine, where there is intense competition for resources and occasional famine. An important implication of this study is that the sugars used by E. coli are present in limited quantities in the intestine, making endogenous carbon stores valuable. Thus, there may be merit to combating enteric infections by using probiotics or prebiotics to manipulate the intestinal microbiota in such a way as to limit the availability of sugars preferred by E. coli O157:H7 and perhaps other pathogens

    Near full-length HIV sequencing in multiple tissues collected postmortem reveals shared clonal expansions across distinct reservoirs during ART

    No full text
    Summary: HIV persists in tissues during antiretroviral therapy (ART), but the relative contribution of different anatomical compartments to the viral reservoir in humans remains unknown. We performed an extensive characterization of HIV reservoirs in two men who donated their bodies to HIV cure research and who had been on suppressive ART for years. HIV DNA is detected in all tissues, with large variations across anatomical compartments and between participants. Intact HIV genomes represent 2% and 25% of all proviruses in the two participants and are mainly detected in secondary lymphoid organs, with the spleen and mediastinal lymph nodes harboring intact viral genomes in both individuals. Multiple copies of identical HIV genomes are found in all tissues, indicating that clonal expansions are common in anatomical sites. The majority (>85%) of these expanded clones are shared across multiple tissues. These findings suggest that infected cells expand, migrate, and possibly circulate between anatomical sites
    corecore