20 research outputs found

    Weak Lensing and Dark Energy

    Get PDF
    We study the power of upcoming weak lensing surveys to probe dark energy. Dark energy modifies the distance-redshift relation as well as the matter power spectrum, both of which affect the weak lensing convergence power spectrum. Some dark-energy models predict additional clustering on very large scales, but this probably cannot be detected by weak lensing alone due to cosmic variance. With reasonable prior information on other cosmological parameters, we find that a survey covering 1000 sq. deg. down to a limiting magnitude of R=27 can impose constraints comparable to those expected from upcoming type Ia supernova and number-count surveys. This result, however, is contingent on the control of both observational and theoretical systematics. Concentrating on the latter, we find that the {\it nonlinear} power spectrum of matter perturbations and the redshift distribution of source galaxies both need to be determined accurately in order for weak lensing to achieve its full potential. Finally, we discuss the sensitivity of the three-point statistics to dark energy.Comment: 16 pages, revtex. Peacock-Dodds PS used for all w, which weakens the constraints. Tomography sec. expanded, estimate included of how well systematics need to be controlle

    Structural superplasticity at higher strain rates of hypereutectoid Fe-5.5Al-1Sn-1Cr-1.3C steel

    No full text
    A fine-grained ultra-high-carbon steel—UHC steel—containing 1.35 wt pct carbon, 5.5 wt pct aluminum, 1 wt pct tin, and 1 wt pct chromium exhibits fine-structure superplasticity in the temperature regime between 775 °C and 900 °C at higher strain rates up to 10−2 s−1. Thermomechanical processing was performed in order to achieve a fine-grained equiaxed microstructure consisting of Îș-carbides of about 0.7 to 2.5 ”m in size finely distributed within the ferritic Fe(Al, Sn, Cr) solid solution matrix with a linear intercept grain size of 3 to 5 ”m. Superplasticity occurred in the strain rate regime of 10−4<- [(e)\dot]≀10−2 s−1 with m values of 0.5 to 0.6 (stress exponent n=1.6 to 2). Tensile elongations of more than 900 pct were recorded. From thermal activation analysis, activation energies of Q=230 to 243 kJ/mole were determined, which clearly reveal a contribution of the alloying elements Al and Sn to the lattice diffusion of iron. The governing deformation mechanism is grain boundary sliding accommodated by dislocation climb controlled by lattice diffusion sustained by chemical diffusion. At very high strain rates of [(e)\dot]≳2 · 10−2 s−1, the strain-rate-sensitivity exponent decreases to about 0.2≀m≀0.27, which indicates class II solid solution behavior of this material.Peer reviewe
    corecore