713 research outputs found

    Achilles tendon moment arm length is smaller in children with cerebral palsy than in typically developing children

    Get PDF
    When studying muscle and whole-body function in children with cerebral palsy (CP), knowledge about both internal and external moment arms is essential since they determine the mechanical advantage of a muscle over an external force. Here we asked if Achilles tendon moment arm (MAAT) length is different in children with CP and age-matched typically developing (TD) children, and if MAAT can be predicted from anthropometric measurements. Sixteen children with CP (age: 10y 7 m ± 3y, 7 hemiplegia, 12 diplegia, GMFCS level: I (11) and II (8)) and twenty TD children (age: 10y 6 m ± 3y) participated in this case-control study. MAAT was calculated at 20° plantarflexion by differentiating calcaneus displacement with respect to ankle angle. Seven anthropometric variables were measured and related to MAAT. We found normalized MAAT to be 15% (∼7 mm) smaller in children with CP compared to TD children (p = 0.003). MAAT could be predicted by all anthropometric measurements with tibia length explaining 79% and 72% of variance in children with CP and TD children, respectively. Our findings have important implications for clinical decision making since MAAT influences the mechanical advantage about the ankle, which contributes to movement function and is manipulated surgically

    Physical activity and breast cancer survival

    Get PDF
    Physical activity improves quality of life after a breast cancer diagnosis, and a beneficial effect on survival would be particularly welcome. Four observational studies have now reported decreased total mortality among physically active women with breast cancer; the two largest have also reported decreased breast cancer specific mortality. The estrogen pathway and the insulin pathway are two potential mechanisms by which physical activity could affect breast cancer survival. Randomized trials are ongoing but trials of lifestyle factors are notoriously challenging to perform. Women with breast cancer have little to lose and may possibly gain from moderate exercise

    Evidence maps and evidence gaps: evidence review mapping as a method for collating and appraising evidence reviews to inform research and policy

    Get PDF
    Evidence reviews are a key mechanism for incorporating extensive, complex and specialised evidence into policy and practice, and in guiding future research. However, evidence reviews vary in scope and methodological rigour, creating several risks for decision-makers: decisions may be informed by less reliable reviews; apparently conflicting interpretations of evidence may obfuscate decisions; and low quality reviews may create the perception that a topic has been adequately addressed, deterring new syntheses (cryptic evidence gaps). We present a new approach, evidence review mapping, designed to produce a visual representation and critical assessment of the review landscape for a particular environmental topic or question. By systematically selecting and describing the scope and rigour of each review, this helps guide non-specialists to the most relevant and methodologically reliable reviews. The map can also direct future research through the identification of evidence gaps (whether cryptic or otherwise) and redundancy (multiple reviews on similar questions). We consider evidence review mapping a complementary approach to systematic reviews and systematic maps of primary literature and an important tool for facilitating evidence-based decision-making and research efficiency

    Fast Statistical Alignment

    Get PDF
    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment—previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches—yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/

    A Bayesian Approach to Analyse Genetic Variation within RNA Viral Populations

    Get PDF
    The development of modern and affordable sequencing technologies has allowed the study of viral populations to an unprecedented depth. This is of particular interest for the study of within-host RNA viral populations, where variation due to error-prone polymerases can lead to immune escape, antiviral resistance and adaptation to new host species. Methods to sequence RNA virus genomes include reverse transcription (RT) and polymerase chain reaction (PCR). RT-PCR is a molecular biology technique widely used to amplify DNA from an RNA template. The method itself relies on the in vitro synthesis of copy DNA from RNA followed by multiple cycles of DNA amplification. However, this method introduces artefactual errors that can act as confounding factors when the sequence data are analysed. Although there are a growing number of published studies exploring the intra- and inter-host evolutionary dynamics of RNA viruses, the complexity of the methods used to generate sequences makes it difficult to produce probabilistic statements about the likely sources of observed sequence variants. This complexity is further compounded as both the depth of sequencing and the length of the genome segment of interest increase. Here we develop a Bayesian method to characterise and differentiate between likely structures for the background viral population. This approach can then be used to identify nucleotide sites that show evidence of change in the within-host viral population structure, either over time or relative to a reference sequence (e.g. an inoculum or another source of infection), or both, without having to build complex evolutionary models. Identification of these sites can help to inform the design of more focussed experiments using molecular biology tools, such as site-directed mutagenesis, to assess the function of specific amino acids. We illustrate the method by applying to datasets from experimental transmission of equine influenza, and a pre-clinical vaccine trial for HIV-1

    Protection of Visual Functions by Human Neural Progenitors in a Rat Model of Retinal Disease

    Get PDF
    BACKGROUND: A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. METHODOLOGY/PRINCIPAL FINDINGS: Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. CONCLUSIONS/SIGNIFICANCE: Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in vivo

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-

    Physical activity, additional breast cancer events, and mortality among early-stage breast cancer survivors: findings from the WHEL Study

    Get PDF
    ObjectiveResearch suggests that physical activity is associated with improved breast cancer survival, yet no studies have examined the association between post-diagnosis changes in physical activity and breast cancer outcomes. The aim of this study was to determine whether baseline activity and 1-year change in activity are associated with breast cancer events or mortality.MethodsA total of 2,361 post-treatment breast cancer survivors (Stage I-III) enrolled in a randomized controlled trial of dietary change completed physical activity measures at baseline and one year. Physical activity variables (total, moderate-vigorous, and adherence to guidelines) were calculated for each time point. Median follow-up was 7.1 years. Outcomes were invasive breast cancer events and all-cause mortality.ResultsThose who were most active at baseline had a 53% lower mortality risk compared to the least active women (HR = 0.47; 95% CI: 0.26, 0.84; p = .01). Adherence to activity guidelines was associated with a 35% lower mortality risk (HR = 0.65, 95% CI: 0.47, 0.91; p < .01). Neither baseline nor 1-year change in activity was associated with additional breast cancer events.ConclusionsHigher baseline (post-treatment) physical activity was associated with improved survival. However, change in activity over the following year was not associated with outcomes. These data suggest that long-term physical activity levels are important for breast cancer prognosis

    Developing a Collaboration with the Houston Independent School District: Testing the Generalizability of a Partnership Model

    Get PDF
    Moving evidence-based practices into real-world settings is a high priority for education and public health. This paper describes the development of a partnership among the Houston Independent School District, the American Institutes of Research, and the Houston Federation of Teachers to support research on and program sustainability for the Good Behavior Game, a team-based classroom behavior management strategy that has shown positive impact in randomized field trials. The conceptual framework guiding partnership development is presented, followed by an application of the framework in Houston. Lessons learned and implications for the next stage of research and practice are then discussed
    corecore