5,970 research outputs found

    Nature vs. Nurture: Dynamical Evolution in Disordered Ising Ferromagnets

    Full text link
    We study the predictability of zero-temperature Glauber dynamics in various models of disordered ferromagnets. This is analyzed using two independent dynamical realizations with the same random initialization (called twins). We derive, theoretically and numerically, trajectories for the evolution of the normalized magnetization and twin overlap as the system size tends to infinity. The systems we treat include mean-field ferromagnets with light-tailed and heavy-tailed coupling distributions, as well as highly-disordered models with a variety of other geometries. In the mean-field setting with light-tailed couplings, the disorder averages out and the limiting trajectories of the magnetization and twin overlap match those of the homogenous Curie--Weiss model. On the other hand, when the coupling distribution has heavy tails, or the geometry changes, the effect of the disorder persists in the thermodynamic limit. Nonetheless, qualitatively all such random ferromagnets share a similar time evolution for their twin overlap, wherein the two twins initially decorrelate, before either partially or fully converging back together due to the ferromagnetic drift.Comment: 16 pages, 7 figure

    Influence of interleukin-2 on Ca2+ handling in rat ventricular myocytes

    Get PDF
    In the present study, we examined the effect of interleukin-2 (IL-2) on cardiomyocyte Ca2+ handling. The effects of steady-state and transient changes in stimulation frequency on the intracellular Ca2+ transient were investigated in isolated ventricular myocytes by spectrofluorometry. In the steady state (0.2 Hz) IL-2 (200 U/ml) decreased the amplitude of Ca2+ transients induced by electrical stimulation and caffeine. At 1.25 mM extracellular Ca2+ concentration ([Ca 2+]o), when the stimulation frequency increased from 0.2 to 1.0 Hz, diastolic Ca2+ level and peak intracellular Ca 2+ concentration ([Ca2+]i), as well as the amplitude of the transient, increased. The positive frequency relationships of the peak and amplitude of [Ca2+]i transients were blunted in the IL-2-treated myocytes. The effect of IL-2 on the electrically induced [Ca2+]i transient was not normalized by increasing [Ca2+]o to 2.5 mM. IL-2 inhibited the frequency relationship of caffeine-induced Ca2+ release. Blockade of sarcoplasmic reticulum (SR) Ca2+-ATPase with thapsigargin resulted in a significant reduction of the amplitude-frequency relationship of the transient similar to that induced by IL-2. The restitutions were not different between control and IL-2 groups at 1.25 mM [Ca2+]o, which was slowed in IL-2-treated myocytes when [Ca2+]o was increased to 2.5 mM. There was no difference in the recirculation fraction (RF) between control and IL-2-treated myocytes at both 1.25 and 2.5 mM [Ca 2+]o. The effects of IL-2 on frequency relationship, restitution, and RF may be due to depressed SR functions and an increased Na+-Ca2+ exchange activity, but not to any change in L-type Ca2+ channels. © 2003 Elsevier Ltd. All rights reserved.postprin

    Zigzag-shaped nickel nanowires via organometallic template-free route

    Get PDF
    In this manuscript, the formation of nickel nanowires (average size: several tens to hundreds of ÎŒm long and 1.0-1.5 ÎŒm wide) at low temperature is found to be driven by dewetting of liquid organometallic precursors during spin coating process and by self-assembly of Ni clusters. Elaboration of metallic thin films by low temperature deposition technique makes the preparation process compatible with most of the substrates. The use of iron and cobalt precursor shows that the process could be extended to other metallic systems. In this work, AFM and SEM are used to follow the assembly of Ni clusters into straight or zigzag lines. The formation of zigzag structure is specific to the Ni precursor at appropriate preparation parameters. This template free process allows a control of anisotropic structures with homogeneous sizes and angles on standard Si/SiO2 surface

    Factors related to children’s caries: a structural equation modeling approach

    Get PDF
    BACKGROUND: Dental caries among preschool children is highly prevalent in many less-developed countries. METHODS: A model which explored the factors related to children’s dental caries was tested in this study using structural equation modeling. Caregivers of children aged 5 years were surveyed on their socioeconomic status, and their oral health knowledge, attitudes and practices. In addition, information on their children’s oral health practices, dental insurance and dental service utilization were collected. Examination of caries was conducted on all children who returned fully completed questionnaires. RESULTS: The results showed that socioeconomic factors influenced children’s oral health practices through the impact of caregivers’ oral health knowledge and practices; that caregivers’ oral health knowledge affected children’s oral health practices through the influence of caregivers’ oral health attitudes and practices; and finally, that children’s oral health practices were linked directly to their caries. CONCLUSION: The findings have important applications for promoting policies aimed at advancing children’s oral health

    Bioinformatics advances in saliva diagnostics

    Get PDF
    There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval, integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva diagnostics made possible by the Saliva Ontology and SDxMart

    Flow noise from spoilers in ducts

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Nature versus Nurture in Complex and Not-So-Complex Systems

    Full text link
    Understanding the dynamical behavior of many-particle systems both in and out of equilibrium is a central issue in both statistical mechanics and complex systems theory. One question involves "nature versus nurture": given a system with a random initial state evolving through a well-defined stochastic dynamics, how much of the information contained in the state at future times depends on the initial condition ("nature") and how much on the dynamical realization ("nurture")? We discuss this question and present both old and new results for low-dimensional Ising spin systems.Comment: 7 page
    • 

    corecore