1,782 research outputs found

    Stimulated Brillouin scattering in layered media: Nanoscale enhancement of silicon

    Full text link
    © 2019 Optical Society of America. We report a theoretical study of stimulated Brillouin scattering (SBS) in general anisotropic media, incorporating the effects of both acoustic strain and local rotation. We apply our general theoretical framework to compute the SBS gain for layered media with periodic length scales smaller than all optical and acoustic wavelengths, where such composites behave like homogeneous anisotropic media. We predict that a layered medium composing nanometer-thin layers of silicon and As 2 S 3 glass has a bulk SBS gain of 1.28 × 10− 9 W −1 m. This is more than 500 times larger than that of silicon and almost double the gain of As 2 S 3 . The enhancement is due to a combination of roto-optic, photoelastic, and artificial photoelastic contributions in the composite structure

    Enhanced acousto-optic properties in layered media

    Full text link
    © 2017 American Physical Society. We present a rigorous procedure for evaluating the photoelastic coefficients of a layered medium in which the periodicity is smaller than the wavelengths of all optical and acoustic fields. Analytical expressions are given for the coefficients of a composite material comprising thin layers of optically isotropic materials. These photoelastic coefficients include artificial contributions that are unique to structured media and arise from the optical and mechanical contrast between the constituents. Using numerical examples, we demonstrate that the acousto-optic properties of layered structures can be enhanced beyond those of the constituent materials. Furthermore, we show that the acousto-optic response can be tuned as desired

    Electrostriction enhancement in metamaterials

    Full text link
    © 2015 American Physical Society. We demonstrate a controllable enhancement in the electrostrictive properties of a medium using dilute composite artificial materials. Analytical expressions for the composite electrostriction are derived and used to show that enhancement, tunability, and suppression can be achieved through a careful choice of constituent materials. Numerical examples with Ag, As2S3, Si, and SiO2 demonstrate that even in a nonresonant regime, artificial materials can bring more than a threefold enhancement in the electrostriction

    Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster

    Get PDF
    Cellular metabolism is regulated by enzyme complexes within the mitochondrion, the function of which are sensitive to the prevailing temperature. Such thermal sensitivity, coupled with the observation that population frequencies of mitochondrial haplotypes tend to associate with latitude, altitude, or climatic regions across species distributions, led to the hypothesis that thermal selection has played a role in shaping standing variation in the mitochondrial DNA (mtDNA) sequence. This hypothesis, however, remains controversial, and requires evidence that the distribution of haplotypes observed in nature corresponds with the capacity of these haplotypes to confer differences in thermal tolerance. Specifically, haplotypes predominating in tropical climates are predicted to encode increased tolerance to heat stress, but decreased tolerance to cold stress. We present direct evidence for these predictions, using mtDNA haplotypes sampled from the Australian distribution of Drosophila melanogaster. We show that the ability of flies to tolerate extreme thermal challenges is affected by sequence variation across mtDNA haplotypes, and that the thermal performance associated with each haplotype corresponds with its latitudinal prevalence. The haplotype that predominates at low (subtropical) latitudes confers greater resilience to heat stress, but lower resilience to cold stress, than haplotypes predominating at higher (temperate) latitudes. We explore molecular mechanisms that might underlie these responses, presenting evidence that the effects are in part regulated by SNPs that do not change the protein sequence. Our findings suggest that standing variation in the mitochondrial genome can be shaped by thermal selection, and could therefore contribute to evolutionary adaptation under climatic stress

    The Royal Society Climate Updates: What have we learnt since the IPCC 5th Assessment Report?

    Get PDF
    Climate has a huge influence on the way we live. For example, it affects the crops we can grow and the diseases we might encounter in particular locations. It also determines the physical infrastructure we need to build to survive comfortably in the face of extremes of heat, cold, drought and flood. Human emissions of carbon dioxide and other greenhouse gases have changed the composition of the atmosphere over the last two centuries. This is expected to take Earth’s climate out of the relatively stable range that has characterised the last few thousand years, during which human society has emerged. Measurements of ice cores and sea-floor sediments show that the current concentration of carbon dioxide, at just over 400 parts per million, has not been experienced for at least three million years. This causes more of the heat from the Sun to be retained on Earth, warming the atmosphere and ocean. The global average of atmospheric temperature has so far risen by about 1˚C compared to the late 19th century, with further increases expected dependent on the trajectory of carbon dioxide emissions in the next few decades. In 2013 and 2014 the Intergovernmental Panel on Climate Change (IPCC) published its fifth assessment report (AR5) assessing the evidence about climate change and its impacts. This assessment considered data from observations and records of the past. It then assessed future changes and impacts based on various scenarios for emissions of greenhouse gases and other anthropogenic factors. In 2015, almost every nation in the world agreed (in the so-called Paris Agreement) to the challenging goal of keeping global average warming to well below 2°C above pre-industrial temperatures while pursuing efforts to limit it to 1.5°C. With the next assessment report (AR6) not due until 2022, it is timely to consider how evidence presented since the publication of AR5 affects the assessments made then. The Earth’s climate is a complex system. To understand it, and the impact that climate change will have, requires many different kinds of study. Climate science consists of theory, observation and modelling. Theory begins with well-established scientific principles, seeks to understand processes occurring over a range of spatial and temporal scales and provides the basis for models. Observation includes long time series of careful measurements, recent data from satellites, and studies of past climate using archives such as tree rings, ice cores and marine sediments. It also encompasses laboratory and field experiments designed to test and enhance understanding of processes. Computer models of the Earth climate system use theory, calibrated and validated by the observations, to calculate the result of future changes. There are nevertheless uncertainties in estimating future climate. Firstly the course of climate change is dependent on what socioeconomic, political and energy paths society takes. Secondly there remain inevitable uncertainties induced for example by variability in the interactions between different parts of the Earth system and by processes, such as cloud formation, that occur at too small a scale to incorporate precisely in global models. Assessments such as those of the IPCC describe the state of knowledge at a particular time, and also highlight areas where more research is needed. We are still exploring and improving our understanding of many of the processes within the climate system, but, on the whole, new research confirms the main ideas underpinning climate research, while refining knowledge, so as to reduce the uncertainty in the magnitude and extent of crucial impacts

    Nebuliser therapy in the intensive care unit

    Get PDF
    The relationship between identity, lived experience, sexual practices and the language through which these are conveyed has been widely debated in sexuality literature. For example, ‘coming out’ has famously been conceptualised as a ‘speech act’ (Sedgwick 1990) and as a collective narrative (Plummer 1995), while a growing concern for individuals’ diverse identifications in relations to their sexual and gender practices has produced interesting research focusing on linguistic practices among LGBT-identified individuals (Leap 1995; Kulick 2000; Cameron and Kulick 2006; Farqhar 2000). While an explicit focus on language remains marginal to literature on sexualities (Kulick 2000), issue of language use and translation are seldom explicitly addressed in the growing literature on intersectionality. Yet intersectional perspectives ‘reject the separability of analytical and identity categories’ (McCall 2005:1771), and therefore have an implicit stake in the ‘vernacular’ language of the researched, in the ‘scientific’ language of the researcher and in the relationship of continuity between the two. Drawing on literature within gay and lesbian/queer studies and cross-cultural studies, this chapter revisits debates on sexuality, language and intersectionality. I argue for the importance of giving careful consideration to the language we choose to use as researchers to collectively define the people whose experiences we try to capture. I also propose that language itself can be investigated as a productive way to foreground how individual and collective identifications are discursively constructed, and to unpack the diversity of lived experience. I address intersectional complexity as a methodological issue, where methodology is understood not only as the methods and practicalities of doing research, but more broadly as ‘a coherent set of ideas about the philosophy, methods and data that underlie the research process and the production of knowledge’ (McCall 2005:1774). My points are illustrated with examples drawn from my ethnographic study on ‘lesbian’ identity in urban Russia, interspersed with insights from existing literature. In particular, I aim to show that an explicit focus on language can be a productive way to explore the intersections between the global, the national and the local in cross-cultural research on sexuality, while also addressing issues of positionality and accountability to the communities researched

    The labour supply effect of Education Maintenance Allowance and its implications for parental altruism

    Get PDF
    Education Maintenance Allowance (EMA) was a UK government cash transfer paid directly to children aged 16–18, in the first 2 years of post-compulsory full-time education. This paper uses the labour supply effect of EMA to infer the magnitude of the transfer response made by the parent, and so test for the presence of an ‘effectively altruistic’ head-of-household, who redistributes resources among household members so as to maximise overall welfare. Using data from the Longitudinal Study of Young People in England, an EMA payment of £30 per week is found to reduce teenagers’ labour supply by 3 h per week and probability of employment by 13 % points from a base of 43 %. We conclude that parents withdraw cash and in-kind transfers from their children to a value of between 22 and 86 % of what the child receives in EMA. This means we reject the hypothesis of an effectively altruistic head-of-household, and argue that making this cash transfer directly to the child produces higher child welfare than if the equivalent transfer were made to parents

    Global Production of Marine Bivalves. Trends and Challenges

    Get PDF
    The global production of marine bivalves for human consumption is more than 15 million tonnes per year (average period 2010–2015), which is about 14% of the total marine production in the world. Most of the marine bivalve production (89%) comes from aquaculture and only 11% comes from the wild fishery. Asia, especially China, is by far the largest producer of marine bivalves, accounting for 85% of the world production and responsible for the production growth. In other continents, the production is stabilizing or decreasing (Europe) the last decades. In order to stimulate growth, sustainability (Planet, Profit, People) of the aquaculture activities is a key issue. Environmental (Planet) aspects for sustainable aquaculture include the fishery on seed resources, carrying capacity, invasive species and organic loading. Food safety issues due to environmental contaminants and biotoxines should be minimized to increase the reliability of marine bivalves as a healthy food source and to stimulate market demands. Properly designed monitoring programs are important tools to accomplish sustainable growth of marine bivalve production
    • …
    corecore