592 research outputs found

    Mapping Groundwater Dependent Ecosystems in California

    Get PDF
    BACKGROUND: Most groundwater conservation and management efforts focus on protecting groundwater for drinking water and for other human uses with little understanding or focus on the ecosystems that depend on groundwater. However, groundwater plays an integral role in sustaining certain types of aquatic, terrestrial and coastal ecosystems, and their associated landscapes. Our aim was to illuminate the connection between groundwater and surface ecosystems by identifying and mapping the distribution of groundwater dependent ecosystems (GDEs) in California. METHODOLOGY/PRINCIPAL FINDINGS: To locate where groundwater flow sustains ecosystems we identified and mapped groundwater dependent ecosystems using a GIS. We developed an index of groundwater dependency by analyzing geospatial data for three ecosystem types that depend on groundwater: (1) springs and seeps; (2) wetlands and associated vegetation alliances; and (3) stream discharge from groundwater sources (baseflow index). Each variable was summarized at the scale of a small watershed (Hydrologic Unit Code-12; mean size = 9,570 ha; n = 4,621), and then stratified and summarized to 10 regions of relative homogeneity in terms of hydrologic, ecologic and climatic conditions. We found that groundwater dependent ecosystems are widely, although unevenly, distributed across California. Although different types of GDEs are clustered more densely in certain areas of the state, watersheds with multiple types of GDEs are found in both humid (e.g. coastal) and more arid regions. Springs are most densely concentrated in the North Coast and North Lahontan, whereas groundwater dependent wetlands and associated vegetation alliances are concentrated in the North and South Lahontan and Sacramento River hydrologic regions. The percentage of land area where stream discharge is most dependent on groundwater is found in the North Coast, Sacramento River and Tulare Lake regions. GDE clusters are located at the highest percentage in the North Coast (an area of the highest annual rainfall totals), North Lahontan (an arid, high desert climate with low annual rainfall), and Sacramento River hydrologic regions. That GDEs occur in such distinct climatic and hydrologic settings reveals the widespread distribution of these ecosystems. CONCLUSIONS/SIGNIFICANCE: Protection and management of groundwater-dependent ecosystems are hindered by lack of information on their diversity, abundance and location. By developing a methodology that uses existing datasets to locate GDEs, this assessment addresses that knowledge gap. We report here on the application of this method across California, but believe the method can be expanded to regions where spatial data exist

    Two-year changes in quality of life in elderly patients with low-energy hip fractures. A case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The long-term effect of hip fracture on health-related quality of life (HRQOL) and global quality of life (GQOL) has not been thoroughly studied in prospective case-control studies.</p> <p>Aims</p> <p>a) to explore whether patients with low-energy hip fracture regain their pre-fracture levels in HRQOL and GQOL compared with changes in age- and sex-matched controls over a two year period; b) to identify predictors of changes in HRQOL and GQOL after two years.</p> <p>Methods</p> <p>We examined 61 patients (mean age = 74 years, <it>SD </it>= 10) and 61 matched controls (mean age = 73 years, <it>SD </it>= 8). The Short Form 36 assessed HRQOL and the Quality of Life Scale assessed GQOL. Paired samples <it>t </it>tests and multiple linear regression analyses were applied.</p> <p>Results</p> <p>HRQOL decreased significantly between baseline and one-year follow-up in patients with hip fractures, within all the SF-36 domains (<it>p </it>< 0.04), except for social functioning (<it>p </it>= 0.091). There were no significant decreases within the SF-36 domains in the controls. Significantly decreased GQOL scores (<it>p </it>< 0.001) were observed both within patients and within controls between baseline and one-year follow-up. The same pattern persisted between baseline and two-year follow-up, except for the HRQOL domain mental health (<it>p </it>= 0.193). The patients with hip fractures did not regain their HRQOL and GQOL. Worsened physical health after two years was predicted by being a patient with hip fracture (B = -5.8, <it>p </it>< 0.001) and old age (B = -1.0, <it>p </it>= 0.015), while worsened mental health was predicted by co-morbidity (B = -2.2, <it>p </it>= 0.029). No significant predictors of differential changes in GQOL were identified.</p> <p>Conclusion</p> <p>A hip fracture has a long-term impact on HRQOL and is a strong predictor of worsened physical health. Our data emphasize the importance of preventing hip fracture in the elderly to maintain physical health. This knowledge should be included in decision-making and health care plans.</p

    Clinical trials update of the European Organization for Research and Treatment of Cancer Breast Cancer Group

    Get PDF
    The present clinical trial update consists of a review of two of eight current studies (the 10981-22023 AMAROS trial and the 10994 p53 trial) of the European Organization for Research and Treatment of Cancer Breast Cancer Group, as well as a preview of the MIND-ACT trial. The AMAROS trial is designed to prove equivalent local/regional control for patients with proven axillary lymph node metastasis by sentinel node biopsy if treated with axillary radiotherapy instead of axillary lymph node dissection, with reduced morbidity. The p53 trial started to assess the potential predictive value of p53 using a functional assay in yeast in patients with locally advanced/inflammatory or large operable breast cancer prospectively randomised to a taxane regimen versus a nontaxane regimen

    Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Get PDF
    The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP) of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1). However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin) Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER), Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP), it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property

    Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction

    Get PDF
    Purpose. Neuromuscular electrical stimulation (NMES) superimposed on voluntary muscle contraction has been recently shown as an innovative training modality within sport and rehabilitation, but its effects on the neuromuscular system are still unclear. The aim of this study was to investigate acute responses in spinal excitability, as measured by the Hoffmann (H) reflex, and in maximal voluntary contraction (MVIC) following NMES superimposed to voluntary isometric contractions (NMES+ISO) compared to passive NMES only and to voluntary isometric contractions only (ISO). Method. Fifteen young adults were required to maintain an ankle plantar-flexor torque of 20% MVC for 20 repetitions during each experimental condition (NMES+ISO, NMES and ISO). Surface electromyography was used to record peak-to-peak Hreflex and motor waves following percutaneous stimulation of the posterior tibial nerve in the dominant limb. An isokinetic dynamometer was used to assess maximal voluntary contraction output of the ankle plantar flexor muscles. Results. H-reflex amplitude was increased by 4.5% after the NMES+ISO condition (p < 0.05), while passive NMES and ISO conditions showed a decrease by 7.8% (p < 0.05) and no change in reflex responses, respectively. There was no change in amplitude of maximal motor wave and in MVIC torque during each experimental condition. Conclusion. The reported facilitation of spinal excitability following NMES+ISO could be due to a combination of greater motor neuronal and corticospinal excitability, thus suggesting that NMES superimposed onto isometric voluntary contractions may provide a more effective neuromuscular stimulus and, hence, training modality compared to NMES alone

    p53 as a potential predictive factor of response to chemotherapy: feasibility of p53 assessment using a functional test in yeast from trucut biopsies in breast cancer patients

    Get PDF
    Assessment of the predictive value of p53 requires the testing of large numbers of samples from patients enrolled in prospective phase III clinical trials. The goal of this study was to determine whether p53 status can be determined by p53 yeast functional assay using the limiting amounts of material that can typically be obtained in prospective phase III trials (particularly when chemotherapy is given before surgery). All patients presenting with a clinically palpable tumour which could be considered large enough to perform a trucut biopsy (⩾2 cm breast tumour) were eligible for this study. Two trucut biopsies and one incisional biopsy were performed on the surgical specimens (mastectomy or tumourectomy). Samples were snap frozen and cryostat sections were taken for histology and p53 testing. Thirty patients were included. Three samples out of 90 failed to give any p53 PCR products, probably because these samples contained almost entirely fibrous tissue. Of the 87 samples that could be tested, the incisional and trucut biopsies results were fully concordant in every case. p53 could be defined in 97% of patients by double trucut biopsy. Eight out of 30 tumours tested were mutant for p53 (27%). p53 status can be reliably determined by yeast assay from single frozen sections of trucut biopsies. Histological examination before p53 testing is essential to exclude cases where the p53 result may reflect only the status of the normal cells in the biopsy

    Measurement of the Rates of Synthesis of Three Components of Ribosomes of Mycobacterium fortuitum: A Theoretical Approach to qRT-PCR Experimentation

    Get PDF
    BACKGROUND: Except for the ribosomal protein L12 (rplL), ribosomal proteins are present as one copy per ribosome; L12 (rplL) is unusual because it is present as four copies per ribosome. Thus, the strategies used by Mycobacterium fortuitum to regulate ribosomal protein synthesis were investigated, including evaluations of the rates of chain elongations of 16S rRNA, rplL and ribosomal protein S12 (rpsL). METHODOLOGY: RNA was isolated from cell cultures and cDNA was prepared. The numbers of cDNA copies of 16S rRNA, precursor-16S rRNA and transcripts of rpsL and rplL were quantified by qRT-PCR and then related to the rates of 16S rRNA, rpsL and rplL chain elongations by means of a mathematical framework for coupled transcription/translation. PRINCIPAL FINDINGS: The rates of synthesis of 16S rRNA, rpsL and rplL respectively were found to be approximately 50 x 10(3) nucleotides h(-1), 1.6 x 10(3) amino acid residues h(-1) and 3.4 x 10(3) amino acid residues h(-1). The number of transcripts of rplL was approximately twice that of rpsL. These data account for the presence of one copy of rpsL and four copies of rplL per ribosome, and reveal that the rate of M. fortuitum ribosome synthesis was closer to that of M. tuberculosis than to E. coli. Except for rplJ, the elongation rate obtained for rpsL was inferred to be appropriate for all other proteins present as one copy per ribosome. SIGNIFICANCE: The results obtained provide the basis for a comprehensive view of the kinetics of ribosome synthesis, and of the ways that bacterial cells utilize genes encoding ribosomal proteins. The methodology also applies to proteins involved in transcription, energy generation and to bacterial proteins in general. The method proposed for measuring the fidelity of cDNA preparations is intrinsically much more sensitive than procedures that measure the integrity of 16S rRNA

    Identifying and Seeing beyond Multiple Sequence Alignment Errors Using Intra-Molecular Protein Covariation

    Get PDF
    BACKGROUND: There is currently no way to verify the quality of a multiple sequence alignment that is independent of the assumptions used to build it. Sequence alignments are typically evaluated by a number of established criteria: sequence conservation, the number of aligned residues, the frequency of gaps, and the probable correct gap placement. Covariation analysis is used to find putatively important residue pairs in a sequence alignment. Different alignments of the same protein family give different results demonstrating that covariation depends on the quality of the sequence alignment. We thus hypothesized that current criteria are insufficient to build alignments for use with covariation analyses. METHODOLOGY/PRINCIPAL FINDINGS: We show that current criteria are insufficient to build alignments for use with covariation analyses as systematic sequence alignment errors are present even in hand-curated structure-based alignment datasets like those from the Conserved Domain Database. We show that current non-parametric covariation statistics are sensitive to sequence misalignments and that this sensitivity can be used to identify systematic alignment errors. We demonstrate that removing alignment errors due to 1) improper structure alignment, 2) the presence of paralogous sequences, and 3) partial or otherwise erroneous sequences, improves contact prediction by covariation analysis. Finally we describe two non-parametric covariation statistics that are less sensitive to sequence alignment errors than those described previously in the literature. CONCLUSIONS/SIGNIFICANCE: Protein alignments with errors lead to false positive and false negative conclusions (incorrect assignment of covariation and conservation, respectively). Covariation analysis can provide a verification step, independent of traditional criteria, to identify systematic misalignments in protein alignments. Two non-parametric statistics are shown to be somewhat insensitive to misalignment errors, providing increased confidence in contact prediction when analyzing alignments with erroneous regions because of an emphasis on they emphasize pairwise covariation over group covariation
    corecore