23 research outputs found

    The Effects Of N, P And Crude Oil On The Decomposition Of Spartina Alterniflora Belowground Biomass

    Get PDF
    We conducted a laboratory experiment to examine how the decomposition of particulate belowground organic matter from a salt marsh is enhanced, or not, by different mixtures of crude oil, nitrogen (N), or phosphorus (P) acting individually or synergistically. The experiment was conducted in 3.8 L sampling chambers producing varying quantities of gas whose volume was used as a surrogate measure of organic decomposition under anaerobic conditions. Gas production after 28 days, from highest to lowest, was +NP = +N \u3e\u3e\u3e +P, or +oil. The gas production under either +P or +oil conditions was indistinguishable from gas production in the control chamber. Nitrogen, not phosphorus, or +NP, was the dominant factor controlling organic decomposition rates in these experiments. The implication for organic salt marsh soils is that shoreline erosion is enhanced by salt marsh oiling, presumably by its toxicity, but not by its effect on the decomposition rates of plant biomass belowground. Nutrient additions, on the other hand, may compromise the soil strength, creating a stronger disparity in soil strength between upper and lower soil layers leading to marsh loss. Nutrient amendments intended to decrease oil concentration in the marsh may not have the desired effect, and are likely to decrease soil strength, thereby enhancing marsh-to-water conversions in organic salt marsh soils

    What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    Get PDF
    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50–100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads

    Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy

    Get PDF
    Floating islands mysteriously moving around on lakes were described by several Latin authors almost two millennia ago. These fascinating ecosystems, known as free-floating mires, have been extensively investigated from ecological, hydrological and management points of view, but there have been no detailed studies of their rates of accumulation of organic matter (OM), organic carbon (OC) and total nitrogen (TN). We have collected a peat core 4 m long from the free-floating island of Posta Fibreno, a relic mire in Central Italy. This is the thickest accumulation of peat ever found in a free-floating mire, yet it has formed during the past seven centuries and represents the greatest accumulation rates, at both decadal and centennial timescale, of OM (0.63 vs. 0.37 kg/m2/yr), OC (0.28 vs. 0.18 kg/m2/yr) and TN (3.7 vs. 6.1 g/m2/yr) ever reported for coeval peatlands. The anomalously high accretion rates, obtained using 14C age dating, were confirmed using 210Pb and 137Cs: these show that the top 2 m of Sphagnum-peat has accumulated in only ~100 years. As an environmental archive, Posta Fibreno offers a temporal resolution which is 10x greater than any terrestrial peat bog, and promises to provide new insight into environmental changes occurring during the Anthropocene
    corecore