42 research outputs found

    Survival of HIV-Infected Adolescents on Antiretroviral Therapy in Uganda: Findings from a Nationally Representative Cohort in Uganda

    Get PDF
    CITATION: Bakanda, C. et al. 2011. Survival of HIV-infected adolescents on antiretroviral therapy in Uganda : findings from a nationally representative cohort in Uganda. PLoS ONE, 6(4): e19261, doi:10.1371/journal.pone.0019261.The original publication is available at http://journals.plos.org/plosoneBackground: Adolescents have been identified as a high-risk group for poor adherence to and defaulting from combination antiretroviral therapy (cART) care. However, data on outcomes for adolescents on cART in resource-limited settings remain scarce. Methods: We developed an observational study of patients who started cART at The AIDS Service Organization (TASO) in Uganda between 2004 and 2009. Age was stratified into three groups: children (≤10 years), adolescents (11-19 years), and adults (≥20 years). Kaplan-Meier survival curves were generated to describe time to mortality and loss to follow-up, and Cox regression used to model associations between age and mortality and loss to follow-up. To address loss to follow up, we applied a weighted analysis that assumes 50% of lost patients had died. Findings: A total of 23,367 patients were included in this analysis, including 810 (3.5%) children, 575 (2.5%) adolescents, and 21 982 (94.0%) adults. A lower percentage of children (5.4%) died during their cART treatment compared to adolescents (8.5%) and adults (10%). After adjusting for confounding, other features predicted mortality than age alone. Mortality was higher among males (p<0.001), patients with a low initial CD4 cell count (p<0.001), patients with advanced WHO clinical disease stage (p<0.001), and shorter duration of time receiving cART (p<0.001). The crude mortality rate was lower for children (22.8 per 1000 person-years; 95% CI: 16.1, 29.5), than adolescents (36.5 per 1000 person-years; 95% CI: 26.3, 46.8) and adults (37.5 per 1000 person-years; 95% CI: 35.9, 39.1). Interpretation: This study is the largest assessment of adolescents receiving cART in Africa. Adolescents did not have cART mortality outcomes different from adults or children. © 2011 Bakanda et al.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019261Publisher's versio

    Prevalence of the metabolic syndrome in Luxembourg according to the Joint Interim Statement definition estimated from the ORISCAV-LUX study

    Get PDF
    ABSTRACT: BACKGROUND: The prevalence of the metabolic syndrome (MS) has been determined in many countries worldwide but never in Luxembourg. This research aimed to 1) establish the gender- and age-specific prevalence of MS and its components in the general adult population of Luxembourg, according to the most recent Joint Interim Statement (JIS) definition, by using both the high and low cut-off points to define abdominal obesity, and 2) compare and assess the degree of agreement with the Revised National Cholesterol Education Programme-Adult Treatment Panel III (R-ATPIII) and the International Diabetes Federation (IDF) definitions. METHODS: A representative stratified random sample of 1349 European subjects, aged 18-69 years, participated to ORISCAV-LUX survey. Logistic regression and odds ratios (OR) were used to study MS prevalence with respect to gender and age. The Framingham risk score (FRS) to predict the 10-year coronary heart disease (CHD) risk was calculated to compare the proportion of MS cases below or above 20%, according to both high and low waist circumference (WC) thresholds. Cohen's kappa coefficient (kappa) was utilized to measure the degree of agreement between MS definitions. RESULTS: The prevalence of the MS defined by the JIS was 28.0% and 24.7% when using the low (94/80) and the high (102/88) WC cut-off points, respectively. The prevalence was significantly higher in men than in women (OR = 2.6 and 2.3 for the low and high WC thresholds), as were all components of the MS except abdominal obesity measured by both thresholds. It also increased with age (OR values in age categories ranging from 2.7 to 28 when compared to the younger subjects for low WC and from 3.3 to 31 for the high WC cut-offs). The 10-year predicted risk of CHD by FRS did not depend on the threshold used. Globally, excellent agreement was observed between the three definitions of MS (kappa= 0.89), in particular between JIS and IDF (kappa = 0.93). Agreement was significantly higher in women than in men, and differed between age groups. CONCLUSION: Regardless of the definition used, the adult population of Luxembourg reveals a high MS prevalence. Our findings contribute to build evidence regarding the definitive construct of the MS, to help selecting the waist circumference thresholds for Europid populations, and to support the need to revise the guidelines for abdominal obesity levels

    DNA Methylation in the Human Cerebral Cortex Is Dynamically Regulated throughout the Life Span and Involves Differentiated Neurons

    Get PDF
    The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5′ CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts—defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)—were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase

    A Mathematical Methodology for Determining the Temporal Order of Pathway Alterations Arising during Gliomagenesis

    Get PDF
    Human cancer is caused by the accumulation of genetic alterations in cells. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and thus represent promising targets for therapeutic intervention. We have previously described a computational approach, called Retracing the Evolutionary Steps in Cancer (RESIC), to determine the temporal sequence of genetic alterations during tumorigenesis from cross-sectional genomic data of tumors at their fully transformed stage. Since alterations within a set of genes belonging to a particular signaling pathway may have similar or equivalent effects, we applied a pathway-based systems biology approach to the RESIC methodology. This method was used to determine whether alterations of specific pathways develop early or late during malignant transformation. When applied to primary glioblastoma (GBM) copy number data from The Cancer Genome Atlas (TCGA) project, RESIC identified a temporal order of pathway alterations consistent with the order of events in secondary GBMs. We then further subdivided the samples into the four main GBM subtypes and determined the relative contributions of each subtype to the overall results: we found that the overall ordering applied for the proneural subtype but differed for mesenchymal samples. The temporal sequence of events could not be identified for neural and classical subtypes, possibly due to a limited number of samples. Moreover, for samples of the proneural subtype, we detected two distinct temporal sequences of events: (i) RAS pathway activation was followed by TP53 inactivation and finally PI3K2 activation, and (ii) RAS activation preceded only AKT activation. This extension of the RESIC methodology provides an evolutionary mathematical approach to identify the temporal sequence of pathway changes driving tumorigenesis and may be useful in guiding the understanding of signaling rearrangements in cancer development

    The neurogenic potential of astrocytes is regulated by inflammatory signals

    Get PDF
    Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes

    Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling

    Get PDF
    Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets.National Science Foundation (U.S.) (DB1-0821391)National Institutes of Health (U.S.) (Grant U54-CA112967)National Institutes of Health (U.S.) (Grant R01-GM089903)National Institutes of Health (U.S.) (P30-ES002109

    Interplay between SIN3A and STAT3 Mediates Chromatin Conformational Changes and GFAP Expression during Cellular Differentiation

    Get PDF
    BACKGROUND: Neurons and astrocytes are generated from common neural precursors, yet neurogenesis precedes astrocyte formation during embryogenesis. The mechanisms of neural development underlying suppression and de-suppression of differentiation-related genes for cell fate specifications are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: By using an in vitro system in which NTera-2 cells were induced to differentiate into an astrocyte-like lineage, we revealed a novel role for Sin3A in maintaining the suppression of GFAP in NTera-2 cells. Sin3A coupled with MeCP2 bound to the GFAP promoter and their occupancies were correlated with repression of GFAP transcription. The repression by Sin3A and MeCP2 may be an essential mechanism underlying the inhibition of cell differentiation. Upon commitment toward an astrocyte-like lineage, Sin3A- MeCP2 departed from the promoter and activated STAT3 simultaneously bound to the promoter and exon 1 of GFAP; meanwhile, olig2 was exported from nuclei to the cytoplasm. This suggested that a three-dimensional or higher-order structure was provoked by STAT3 binding between the promoter and proximal coding regions. STAT3 then recruited CBP/p300 to exon 1 and targeted the promoter for histone H3K9 and H3K14 acetylation. The CBP/p300-mediated histone modification further facilitates chromatin remodeling, thereby enhancing H3K4 trimethylation and recruitment of RNA polymerase II to activate GFAP gene transcription. CONCLUSIONS/SIGNIFICANCE: These results provide evidence that exchange of repressor and activator complexes and epigenetic modifications are critical strategies for cellular differentiation and lineage-specific gene expression

    Large-Scale Screening of a Targeted Enterococcus faecalis Mutant Library Identifies Envelope Fitness Factors

    Get PDF
    Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% Gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence

    Molecular imaging of drug transit through the blood-brain barrier with MALDI mass spectrometry imaging

    Get PDF
    Drug transit through the blood-brain barrier (BBB) is essential for therapeutic responses in malignant glioma. Conventional methods for assessment of BBB penetrance require synthesis of isotopically labeled drug derivatives. Here, we report a new methodology using matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) to visualize drug penetration in brain tissue without molecular labeling. In studies summarized here, we first validate heme as a simple and robust MALDI MSI marker for the lumen of blood vessels in the brain. We go on to provide three examples of how MALDI MSI can provide chemical and biological insights into BBB penetrance and metabolism of small molecule signal transduction inhibitors in the brain - insights that would be difficult or impossible to extract by use of radiolabeled compound

    Age-Related Changes in the Oligodendrocyte Progenitor Pool Influence Brain Remodeling after Injury

    No full text
    Brain remodeling occurs after all forms of brain injury, though the mechanisms underlying this phenomenon are mostly unknown. Neural stem and progenitor cells are one source of endogenous cells that may contribute to brain remodeling and subsequent recovery. In addition, certain populations of progenitors are particularly susceptible to injury, and their depletion may lead to the impairment of developmental processes that vary with age. We particularly focus on glial progenitors, which are more abundant postnatally and particularly susceptible to acquired brain injuries such as traumatic brain injury. We have recently characterized a novel transgenic mouse that expresses herpes thymidine kinase under the control of the neural-progenitor-specific nestin promoter and allows for temporally induced ablation of dividing progenitors. By genetically depleting dividing cortical progenitors at various times, we identify postnatal day 7 (P7) to P14 as a critical period for oligodendrogenesis. Targeted ablation of dividing progenitors during this window leads to cell-specific depletion of oligodendrocyte precursors expressing platelet-derived growth factor receptor-α and corresponding myelination and motor deficits. This modeling provides insight into how the age at which white matter injury occurs influences both injury severity and subsequent recovery
    corecore