171 research outputs found

    Dioxiranes generated in situ from pyruvates and oxone as environmentally friendly oxidizing agents for disinfection

    Get PDF
    Dioxiranes generated in situ from pyruvates (α-keto esters) and Oxone have been found to be environmentally friendly oxidizing agents for disinfection. These oxidizing agents were highly effective for destruction of various strains of bacteria, fungi, and bacterial endospores in a wide temperature range with exceptional stability. Notably, by using an aqueous solution of methyl pyruvate (1a) and Oxone/NaHCO3, complete destruction of bacteria such as Staphylococcus aureusand fungus Penicillium corylophilum was achieved within 5 min at 20 °C at neutral pH. Highly chemical-resistant bacterial endospores of Bacillus cereus could also be destroyed. The high antibacterial activity of 1a could be attributed to its strong electron-withdrawing α-ester group. © 2006 American Chemical Society.postprin

    Changes in urinary metabolomic profile during relapsing renal vasculitis

    Get PDF
    Current biomarkers of renal disease in systemic vasculitis lack predictive value and are insensitive to early damage. To identify novel biomarkers of renal vasculitis flare, we analysed the longitudinal urinary metabolomic profile of a rat model of anti-neutrophil cytoplasmic antibody (ANCA) vasculitis. Wistar-Kyoto (WKY) rats were immunised with human myeloperoxidase (MPO). Urine was obtained at regular intervals for 181 days, after which relapse was induced by re-challenge with MPO. Urinary metabolites were assessed in an unbiased fashion using nuclear magnetic resonance (NMR) spectroscopy, and analysed using partial least squares discriminant analysis (PLS-DA) and partial least squares regression (PLS-R). At 56 days post-immunisation, we found that rats with vasculitis had a significantly different urinary metabolite profile than control animals; the observed PLS-DA clusters dissipated between 56 and 181 days, and re-emerged with relapse. The metabolites most altered in rats with active or relapsing vasculitis were trimethylamine N-oxide (TMAO), citrate and 2-oxoglutarate. Myo-inositol was also moderately predictive. The key urine metabolites identified in rats were confirmed in a large cohort of patients using liquid chromatography-mass spectrometry (LC-MS). Hypocitraturia and elevated urinary myo-inositol remained associated with active disease, with the urine myo-inositol:citrate ratio being tightly correlated with active renal vasculitis

    Redefining the Expression and Function of the Inhibitor of Differentiation 1 in Mammary Gland Development

    Get PDF
    The accumulation of poorly differentiated cells is a hallmark of breast neoplasia and progression. Thus an understanding of the factors controlling mammary differentiation is critical to a proper understanding of breast tumourigenesis. The Inhibitor of Differentiation 1 (Id1) protein has well documented roles in the control of mammary epithelial differentiation and proliferation in vitro and breast cancer progression in vivo. However, it has not been determined whether Id1 expression is sufficient for the inhibition of mammary epithelial differentiation or the promotion of neoplastic transformation in vivo. We now show that Id1 is not commonly expressed by the luminal mammary epithelia, as previously reported. Generation and analysis of a transgenic mouse model of Id1 overexpression in the mammary gland reveals that Id1 is insufficient for neoplastic progression in virgin animals or to prevent terminal differentiation of the luminal epithelia during pregnancy and lactation. Together, these data demonstrate that there is no luminal cell-autonomous role for Id1 in mammary epithelial cell fate determination, ductal morphogenesis and terminal differentiation

    ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

    Full text link
    During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer

    Feasibility of a controlled trial aiming to prevent excessive pregnancy-related weight gain in primary health care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive gestational weight gain and postpartum weight retention may predispose women to long-term overweight and other health problems. Intervention studies aiming at preventing excessive pregnancy-related weight gain are needed. The feasibility of implementing such a study protocol in primary health care setting was evaluated in this pilot study.</p> <p>Methods</p> <p>A non-randomized controlled trial was conducted in three intervention and three control maternity and child health clinics in primary health care in Finland. Altogether, 132 pregnant and 92 postpartum women and 23 public health nurses (PHN) participated in the study. The intervention consisted of individual counselling on physical activity and diet at five routine visits to a PHN and of an option for supervised group exercise until 37 weeks' gestation or ten months postpartum. The control clinics continued their usual care. The components of the feasibility evaluation were 1) recruitment and participation, 2) completion of data collection, 3) realization of the intervention and 4) the public health nurses' experiences.</p> <p>Results</p> <p>1) The recruitment rate was slower than expected and the recruitment period had to be prolonged from the initially planned three months to six months. The average participation rate of eligible women at study enrolment was 77% and the drop-out rate 15%. 2) In total, 99% of the data on weight, physical activity and diet and 96% of the blood samples were obtained. 3) In the intervention clinics, 98% of the counselling sessions were realized, their contents and average durations were as intended, 87% of participants regularly completed the weekly records for physical activity and diet, and the average participation percentage in the group exercise sessions was 45%. 4) The PHNs regarded the extra training as a major advantage and the high additional workload as a disadvantage of the study.</p> <p>Conclusion</p> <p>The study protocol was mostly feasible to implement, which encourages conducting large trials in comparable settings.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN21512277</p

    Overexpression of the Axl tyrosine kinase receptor in cutaneous SCC-derived cell lines and tumours

    Get PDF
    The molecular mechanisms that underlie the development of squamous cell skin cancers (SSC) are poorly understood. We have used oligonucleotide microarrays to compare the differences in cellular gene expression between a series of keratinocyte cell that mimic disease progression with the aim of identifying genes that may potentially contribute towards squamous cell carcinoma (SCC) progression in vivo, and in particular to identify markers that may serve as potential therapeutic targets for SCC treatment. Gene expression differences were corroborated by polymerase chain reaction and Western blotting. We identified Axl, a receptor tyrosine kinase with transforming potential that has also been shown to have a role in cell survival, adhesion and chemotaxis, was upregulated in vitro in SCC-derived cells compared to premalignant cells. Extending the investigation to tumour biopsies showed that the Axl protein was overexpressed in vivo in a series of SCCs

    The Flagellum of Pseudomonas aeruginosa Is Required for Resistance to Clearance by Surfactant Protein A

    Get PDF
    Surfactant protein A (SP-A) is an important lung innate immune protein that kills microbial pathogens by opsonization and membrane permeabilization. We investigated the basis of SP-A-mediated pulmonary clearance of Pseudomonas aeruginosa using genetically-engineered SP-A mice and a library of signature-tagged P. aeruginosa mutants. A mutant with an insertion into flgE, the gene that encodes flagellar hook protein, was preferentially cleared by the SP-A(+/+) mice, but survived in the SP-A(-/-) mice. Opsonization by SP-A did not play a role in flgE clearance. However, exposure to SP-A directly permeabilized and killed the flgE mutant, but not the wild-type parental strain. P. aeruginosa strains with mutation in other flagellar genes, as well as mucoid, nonmotile isolates from cystic fibrosis patients, were also permeabilized by SP-A. Provision of the wild-type fliC gene restored the resistance to SP-A-mediated membrane permeabilization in the fliC-deficient bacteria. In addition, non-mucoid, motile revertants of CF isolates reacquired resistance to SP-A-mediated membrane permeability. Resistance to SP-A was dependent on the presence of an intact flagellar structure, and independent of flagellar-dependent motility. We provide evidence that flagellar-deficient mutants harbor inadequate amounts of LPS required to resist membrane permeabilization by SP-A and cellular lysis by detergent targeting bacterial outer membranes. Thus, the flagellum of P. aeruginosa plays an indirect but important role resisting SP-A-mediated clearance and membrane permeabilization

    Identification of calcium-binding proteins associated with the human sperm plasma membrane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The precise composition of the human sperm plasma membrane, the molecular interactions that define domain specific functions, and the regulation of membrane associated proteins during the capacitation process, still remain to be fully understood. Here, we investigated the repertoire of calcium-regulated proteins associated with the human sperm plasma membrane.</p> <p>Methods</p> <p>Surface specific radioiodination was combined with two-dimensional gel electrophoresis, a 45Ca-overlay assay, computer assisted image analysis and mass spectrometry to identify calcium-binding proteins exposed on the human sperm surface.</p> <p>Results</p> <p>Nine acidic 45Ca-binding sperm proteins were excised from stained preparative 2D gels and identified by mass spectrometry. Five of the calcium binding proteins; HSPA2 (HSP70-1), HSPA5 (Bip), HYOU1 (ORP150), serum amyloid P-component (SAP) and protein kinase C substrate 80K-H (80K-H) were found to be accessible to Iodo-Bead catalyzed 125I-labelling on the surface of intact human sperm. Agglutination and immunofluorescence analysis confirmed that SAP is situated on the plasma membrane of intact, motile sperm as well as permeabilized cells. Western blot analysis showed increased phosphorylation of human sperm 80K-H protein following in vitro capacitation. This is the first demonstration of the 80K-H protein in a mammalian sperm.</p> <p>Conclusion</p> <p>The presence of SAP on the surface of mature sperm implies that SAP has a physiological role in reproduction, which is thought to be in the removal of spermatozoa from the female genital tract via phagocytosis. Since 80K-H is a Ca2+-sensor recently implicated in the regulation of both inositol 1,4,5-trisphosphate receptor and transient receptor potential (TRP) cation channel activities, its detection in sperm represents the first direct signaling link between PKC and store-operated calcium channels identified in human sperm.</p

    Identification of a General O-linked Protein Glycosylation System in Acinetobacter baumannii and Its Role in Virulence and Biofilm Formation

    Get PDF
    Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening “superbugs” for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the O-glycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that O-glycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics
    corecore