4,320 research outputs found

    Breaking the MBA delivery mould: A multi-group international MBA / practitioner virtual collaborative project

    Get PDF
    The marketing education project presented here brings together a major UK financial institution in the banking sector and a selection of its high value clients (B-to-B) via e-mail, telephone, video conferencing and other web-based technologies, with two geographically dispersed MBA classes in the UK and the US. Student groups were set up in virtual teams to target critical customer issues, analyzing gaps in the client-company interface. The two MBA courses included Customer Management & Quality Systems delivered at the University of Manchester, Manchester Business School (UK) and International Marketing, delivered at Missouri State University (US). The groups worked as a "think tank" collaborating to solve important customer service issues

    Generating Robust and Efficient Networks Under Targeted Attacks

    Full text link
    Much of our commerce and traveling depend on the efficient operation of large scale networks. Some of those, such as electric power grids, transportation systems, communication networks, and others, must maintain their efficiency even after several failures, or malicious attacks. We outline a procedure that modifies any given network to enhance its robustness, defined as the size of its largest connected component after a succession of attacks, whilst keeping a high efficiency, described in terms of the shortest paths among nodes. We also show that this generated set of networks is very similar to networks optimized for robustness in several aspects such as high assortativity and the presence of an onion-like structure

    A stronger topology for the Brownian web

    Full text link
    We propose a metric space of coalescing pairs of paths on which we are able to prove (more or less) directly convergence of objects such as the persistence probability in the (one dimensional, nearest neighbor, symmetric) voter model or the diffusively rescaled weight distribution in a silo model (as well as the equivalent output distribution in a river basin model), interpreted in terms of (dual) diffusively rescaled coalescing random walks, to corresponding objects defined in terms of the Brownian web.Comment: 22 page

    Is the Riemann zeta function in a short interval a 1-RSB spin glass ?

    Full text link
    Fyodorov, Hiary & Keating established an intriguing connection between the maxima of log-correlated processes and the ones of the Riemann zeta function on a short interval of the critical line. In particular, they suggest that the analogue of the free energy of the Riemann zeta function is identical to the one of the Random Energy Model in spin glasses. In this paper, the connection between spin glasses and the Riemann zeta function is explored further. We study a random model of the Riemann zeta function and show that its two-overlap distribution corresponds to the one of a one-step replica symmetry breaking (1-RSB) spin glass. This provides evidence that the local maxima of the zeta function are strongly clustered.Comment: 20 pages, 1 figure, Minor corrections, References update

    Nature vs. Nurture: Dynamical Evolution in Disordered Ising Ferromagnets

    Full text link
    We study the predictability of zero-temperature Glauber dynamics in various models of disordered ferromagnets. This is analyzed using two independent dynamical realizations with the same random initialization (called twins). We derive, theoretically and numerically, trajectories for the evolution of the normalized magnetization and twin overlap as the system size tends to infinity. The systems we treat include mean-field ferromagnets with light-tailed and heavy-tailed coupling distributions, as well as highly-disordered models with a variety of other geometries. In the mean-field setting with light-tailed couplings, the disorder averages out and the limiting trajectories of the magnetization and twin overlap match those of the homogenous Curie--Weiss model. On the other hand, when the coupling distribution has heavy tails, or the geometry changes, the effect of the disorder persists in the thermodynamic limit. Nonetheless, qualitatively all such random ferromagnets share a similar time evolution for their twin overlap, wherein the two twins initially decorrelate, before either partially or fully converging back together due to the ferromagnetic drift.Comment: 16 pages, 7 figure

    Nature versus Nurture in Complex and Not-So-Complex Systems

    Full text link
    Understanding the dynamical behavior of many-particle systems both in and out of equilibrium is a central issue in both statistical mechanics and complex systems theory. One question involves "nature versus nurture": given a system with a random initial state evolving through a well-defined stochastic dynamics, how much of the information contained in the state at future times depends on the initial condition ("nature") and how much on the dynamical realization ("nurture")? We discuss this question and present both old and new results for low-dimensional Ising spin systems.Comment: 7 page

    Towards designing robust coupled networks

    Get PDF
    Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy

    Statistically validated networks in bipartite complex systems

    Get PDF
    Many complex systems present an intrinsic bipartite nature and are often described and modeled in terms of networks [1-5]. Examples include movies and actors [1, 2, 4], authors and scientific papers [6-9], email accounts and emails [10], plants and animals that pollinate them [11, 12]. Bipartite networks are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set. When one constructs a projected network with nodes from only one set, the system heterogeneity makes it very difficult to identify preferential links between the elements. Here we introduce an unsupervised method to statistically validate each link of the projected network against a null hypothesis taking into account the heterogeneity of the system. We apply our method to three different systems, namely the set of clusters of orthologous genes (COG) in completely sequenced genomes [13, 14], a set of daily returns of 500 US financial stocks, and the set of world movies of the IMDb database [15]. In all these systems, both different in size and level of heterogeneity, we find that our method is able to detect network structures which are informative about the system and are not simply expression of its heterogeneity. Specifically, our method (i) identifies the preferential relationships between the elements, (ii) naturally highlights the clustered structure of investigated systems, and (iii) allows to classify links according to the type of statistically validated relationships between the connected nodes.Comment: Main text: 13 pages, 3 figures, and 1 Table. Supplementary information: 15 pages, 3 figures, and 2 Table

    The role of asymmetric interactions on the effect of habitat destruction in mutualistic networks

    Get PDF
    Plant-pollinator mutualistic networks are asymmetric in their interactions: specialist plants are pollinated by generalist animals, while generalist plants are pollinated by a broad involving specialists and generalists. It has been suggested that this asymmetric ---or disassortative--- assemblage could play an important role in determining the equal susceptibility of specialist and generalist plants under habitat destruction. At the core of the argument lies the observation that specialist plants, otherwise candidates to extinction, could cope with the disruption thanks to their interaction with generalist pollinators. We present a theoretical framework that supports this thesis. We analyze a dynamical model of a system of mutualistic plants and pollinators, subject to the destruction of their habitat. We analyze and compare two families of interaction topologies, ranging from highly assortative to highly disassortative ones, as well as real pollination networks. We found that several features observed in natural systems are predicted by the mathematical model. First, there is a tendency to increase the asymmetry of the network as a result of the extinctions. Second, an entropy measure of the differential susceptibility to extinction of specialist and generalist species show that they tend to balance when the network is disassortative. Finally, the disappearance of links in the network, as a result of extinctions, shows that specialist plants preserve more connections than the corresponding plants in an assortative system, enabling them to resist the disruption.Comment: 14 pages, 7 figure
    corecore