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LIMITING BEHAVIOR OF RANDOM
GIBBS MEASURES:

METASTATES IN SOME DISORDERED
MEAN FIELD MODELS

Christof Kiilske

Courant Institute of Mathematical Sciences
251 Mercer Street
New York, NY 10012

e-mail: kuelske@cims.nyu.edu

Abstract: We present examples of random mean field spin models for which the size depen-
dence of their Gibbs measures py_ can be rigorously analyzed. We investigate their ‘empirical
metastates’ 1/N 211:,:1 84y, » introduced by Newman and Stein, along the sequence of finite vol-
umes A, = {1,...,n}. The empirical metastate is shown not to converge in our examples if the
realization of the disorder is fixed. This phenomenon leads us to consider the distributions w.r.t
disorder of the empirical metastates for which we show convergence and give explicit limiting

expressions.



I. Introduction

It is the aim of this note to discuss rigorous results on the size dependence of random
spin systems in two examples of well known mean field systems; these will be the Curie Weiss
Random Field Ising Model (CWRFIM) and the Hopfield model. We will discuss weak cluster
points of Gibbs measures and ‘Metastates’; for the introduction and motivation of the latter we
refer the reader to the article of Newman and Stein in this volume. The motivation for studying
these models is in fact to give rigorous examples of the treatment of size dependence in terms
of metastates. We will only sketch the proofs of the results presented here; complete estimates

can be found in [K2].

In our first example, the Curie Weiss Random Field Ising Model (CWRFIM), we will write

1 g
pn (M(0i)i=1,.. N = o —exp | o Z 005+ P Z 70 (1.1)
1<4,j<N 1<i<N
for the finite volume Gibbs measures in the volume {1,...,N}. o; = +1 are Ising spins. For

simplicity we take the quenched disorder variables 7; as i.i.d. variables with IP [n; = +€] = %
As usual the py(7) can also be viewed as measures on the infinite spin space by tensoring with

arbitrary product measures for the spins at sites 1 > N.

In our second example, the Hopfield Model with finite number M of patterns, the finite

volume Gibbs measure are denoted by

i O)l(imr,w] = e [ 2 S Y eretow, (1.2)

Norm. —
1<%,j<N 1<v<M

The ‘disorder’ enters through the patterns {* = (£!);ec v with i.i.d. bits IP[¢} = £1] = 7.

2

The advantage of these mean field models is that they allow rigorously to make sense out

of an approximate extreme decomposition of the form

N(m) ~ ) PR (mul(n) (1.3)

Here 7 is a generic notation for the quenched disorder variable, u7 (n) are the ‘extremal infinite
volume Gibbs measures’ describing the m’ th phase, and p3}(n) are the random weights whose
large N-behavior contains the phenomenon of size dependence. The obtained estimates for (1.3)

can then be used to control the large N-behavior of the empirical metastate

N
1
N () = 3 D Oun(n) (1.4)
n=1
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When dealing with convergence and approximations of the type (1.3) we have to be precise
about the topology. As in [AW] and in the articles of Newman and Stein, the topologies used
on the three different levels of: spins, states (probability measures on the infinite volume spin
space) and metastates (probability measures on the states) are: The product topology for the
spin space; the corresponding weak topology for the states; and the inherited weak topology on
the metastates. The latter means that convergence is checked on functions on states u of the

form
F(p) = F (u(fr), -, p(f1)) (1.5)

where F' : IR' — IR is a polynomial; fi,..., f; are local functions on Q = {1, -1},

An important question that can be asked about the empirical metastate is: Does kn(7),
as defined in (1.4) with the natural sequence of volumes A, = {1,...,n}, converge for fixed
realization 7?7 As we will see below, the answer is no in our examples; instead we can characterize
the large N behavior of Ky in two possible ways: by (a) fixed-n ‘pathwise’ approximation; by

(b) showing convergence in distribution.

II. The Curie Weiss Random Field Ising Model

The phase diagram of the system is well known (see [SW],[APZ]). At low temperatures 1/4
and small € the model is ferromagnetic, i.e. there exist two ‘pure’ phases, a ferromagnetic +
phase p () and a — phase p,(7), given by the infinite product measures
eB(Em™(B,€)+m:)w;
: (2.1
2 cosh(B(£m*(8, €) + m:))

+
pm(mlon =wal =]
i€EA
where m*(8,€) > 0 is the largest solution of the averaged mean field equation. We restrict our
interest to the interior of this two phase region of the phase diagram. Then an approximate

extreme decomposition can be written as

pn(n) = p(Wx)ud, (n) + (1 — p(Wy)) o (1) (2:2)

with weights given by
ec2(ﬂ)WN

Their dependence on the randomness is only through the random walk

Wy= > % (2.4)

1<i<N

Assuming the validity of (2.2) for the moment we would like to point out the following observa-

tions.



(i) Given a local function f(o) of the spins, the random variables p(Wx) and [ pE (n)(do) f(0)
become asymptotically independent for large N. This important phenomenon of asymptotic
decoupling is also generally expected to hold in lattice systems, as long as the dependence of

the pure states on the underlying field describing the quenched disorder is effectively local.l

(ii) The state pn(n) is ‘pure most of the times n’. Since W, takes values of the order of
magnitude nz for a large fraction of times, we can use the approximation p(W,) =~ 1w, >0

for the empirical metastate to obtain

= S F (aam)) () P (0) + (1~ () F i ) (2.5)

with ny(n) = %#{1 <n< N|W, > 0}.

(i) According to the classical arcsine-law for the coin-tossing random walk we have then

nn(n) ='W n.

In fact, in [K2] the following precise results are proven. Let us write CP{un, N =1,2,...}

for the set of cluster points of the sequence uy w.r.t the weak topology.

THEOREM 1: Denote by un(n) the finite volume Gibbs measures of a CWRFIM with 3, ¢

lying in the interior of the two phase region. Then we have with the above notations

(i) Weak Cluster Points: For a.e. realization of the random fields n,

CP{un(n), N=1,2,..}

- {q“+ (m+(1- q)u‘(n)é = 1+ exp(—2¢(B)2), z € Z U {+00} U {_oo}} (2.6)

(iia) Empirical metastate: For a.e. 7, for all continuous F

lim (% > F(#n(ﬂ))—(nN(n)F(Mi;(n))Jr(1—nN(77))F(#;(77)))) =0 (27)

NToo
1<n<N

(iib) Empirical metastate: law

lim % 3 Flpn(0) =% 1o F (52, (1) + (1 — n0o) F (e (m)) (2.8)

! For an example where this local dependence of the Gibbs measure on the underlying ran-
domness becomes apparent in a lattice system, see the construction of the groundstate in the

Bricmont-Kupiainen-renormalization group treatment in [BoK], [K1].
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where o, 15 a ‘fresh’ random variable, independent of n on the r.h.s. with distribution IP [n. < z]

2 .
2 arcsin /.

(iii) Conditioned metastate (Aizenman- Wehr metastate): For a.e. 7

1 1

R(m) = §5u+(n) + §5u‘(n) (2.9)

For (i), see also [APZ]. Note that this example shows that the set of weak cluster points can
be bigger than the support of the metastates. Let us finally explain statement (iii) about the
metastate obtained by conditioning the joint limiting distribution of (7, un (7)) (see the article
of Newman and Stein in this volume). Let us recall its definition: Assume that for each jointly
continuous function G(u,n) (w.r.t the weak topology for 4 and the product topology for 7) the
limit

Ntoo
exists and defines a probability measure K (du,dn). Then we denote by &(n)(du) the regular
conditional probability of K given 7 and call it the conditioned metastate. It is thus defined
by the equation [ K(dp,dn)G(u,n) = IE[R(n)(dw)G(k,n)]. Now, the statement (iii) in the
CWRFIM is explained by the approximations

E[G(un(n),n)]= IE [GWn)ud (1) + (1 - p(Wn)) s (n),n)]

~ %IEG(MZ;(HM) + %IEG(u;(n),n)

where the last approximation uses the asymptotic decoupling of the weights and the dependence

of the function G other than through the weights.

Let us remark that we expect the non-convergence of the empirical metastate for fixed
realization to occur also in the lattice random field Ising model if we use a sequence of nested
boxes (Ap)n=1,2,.. containing |A,| ~ n? spins. Then also an ansatz of the form (2.2) (and
consequently (2.5)) is expected if we replace W, in these formulas by > .\ 7. = Wi,

Assuming this we investigate the variance

fim 18 (G jan(n), m)) = [ K (du, dn)G(in) (2.10)

(2.11)

IE [n}] - E[ny]" = % Y E[sign(Wia,)sign (Wia,.))] (2.12)

1<n,m<N

In fact, (2.12) remains bounded below against zero when N 1 oo, for polynomially growing
sequences |A,|. (This follows easily from IE[sign (Wy)sign (Was)] & const /1w for fixed
% << 1 when N, M 1 oo .) But, if limy1, ny existed for fixed realization it would have to be
a.s. constant, being a tail variable. Consequently, this would imply the non-convergence of the

empirical metastate for fixed realization.



ITI. The Hopfield model with finite number of states

Since the Hopfield model is treated very intensively in this volume (see in particular the

articles by Bovier and Gayrard, resp. Talagrand), we will only be very brief here.

The thermodynamics for finite number of patterns is very well known. The role of the

infinite volume Gibbs measures is now played by the M symmetric mixtures, the Mattis states

(ks (&) + pes (6)) (3.1)
where
e:l:ﬁm" &Y w;

vE(E)[op = wa] = T A
Koo (E)[ A A] n 2COSh(,3m*)

Here m* is the solution of the (ordinary) Curie Weiss equation. The asymptotic extremal

decomposition becomes

pn(@) =~ Y P (N ThN(€))nk(€) (3.2)

with the random walk

2

bhy (& Z (Erey — 5v) (3.3)

i=1
It takes values by (§) € A = {M X M symm. matrices with vanishing diagonal }. The weights
are then obtained through the function p: A - & = {M — dim. prob. vectors} given by
v (V)
p’(V)= .
V= 570 (3.4
7”(V) = exp (c(8)(V*)™)

with the constant ¢(8) = y- We remark that, for M >3 (which we assume to avoid

2= ,6(1 m*)z
trivialities), the mapping p is onto (see [K2]). Let us define

Z bgnr 20 (6) (3.5)

To describe the limit of the law of the empirical metastate we also introduce a Brownian motion
W; in A, it is simply obtained by substituting independent standard one dimensional Brownian
motions for the upper off-diagonal elements. Then the analogue of the theorem for the CWRFIM

reads



THEOREM 2: Denote by un(€) the finite volume Gibbs measures of a Hopfield model with

M patterns at inverse temperature 3 > 1. Then we have with the above notations
(i) Weak cluster points: For a.e. £

CP{:U'N(E): N=12,.. } = Z qulu'lolo(g)7 (qu)uzl,...,M €S (3'6)

1<v<M
(iia) Empirical metastate: For a.e. &

i ([ s ©@r - [m©@rm) =o (3.7

NToo

(iib) Empirical metastate: law

M
.1 I ! W,
lim — F(un = aw/ dtF v (—) v 3.8
Am ,?: (kn (£)) i (E WAL (38)
where W; is Brownian motion in A, indep. of &
(#i) Conditioned metastate: For a.e.

R(&)(F) = [EgF (Z p” (9) 1% (E)) (3.9)

v=1
where g is a Normal Gaussian in A, indep. of £
Again, the empirical metastate does not convergence for fixed realization. In contrast to

the previous example, the metastates give mass to all miztures of Gibbs measures, not only to

the extremal ones.

The volume dependence of the Gibbs measures when the number of patterns N(M) goes

to infinity will be treated in a forthcoming paper.
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