269 research outputs found

    KIAA0101 (OEACT-1), an expressionally down-regulated and growth-inhibitory gene in human hepatocellular carcinoma

    Get PDF
    BACKGROUND: Our previous cDNA array results indicated KIAA0101 as one of the differentially expressed genes in human hepatocellular carcinoma (HCC) as compared with non-cancerous liver. However, it is necessary to study its expression at protein level in HCC and its biological function for HCC cell growth. METHOD: Western blot and tissue array were performed to compare KIAA0101 protein expression level in paired human HCC and non-cancerous liver tissues from the same patients. Investigation of its subcellular localization was done by using dual fluorescence image examination and enriched mitochondrial protein Western blot analysis. The in vitro cell growth curve was used for examing the effect of over-expression of KIAA0101 in HCC cells. FACS was used to analyze the cell cycle pattern in KIAA0101 expression positive (+) and negative (-) cell populations isolated by the pMACSKK(II )system after KIAA0101 cDNA transfection. RESULTS: Western blot showed KIAA0101 protein expression was down-regulated in HCC tissues as compared with their counterpart non-cancerous liver tissues in 25 out of 30 cases. Tissue array also demonstrated the same pattern in 161 paired samples. KIAA0101 was predominantly localized in mitochondria and partially in nuclei. KIAA0101 cDNA transfection could inhibit the HCC cell growth in vitro. In cell cycle analysis, it could arrest cells at the G(1 )to S phase transition. CONCLUSION: KIAA0101 protein expression was down-regulated in HCC. This gene could inhibit the HCC cell growth in vitro and presumably by its blocking effect on cell cycle

    Resveratrol: A Multifunctional Compound Improving Endothelial Function: Editorial to: “Resveratrol Supplementation Gender Independently Improves Endothelial Reactivity and Suppresses Superoxide Production in Healthy Rats” by S. Soylemez et al.

    Get PDF
    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression and activity of NADPH oxidases, resveratrol inhibits superoxide-mediated NO inactivation. Some resveratrol effects are mediated by sirtuin 1 (SIRT1) or estrogen receptors, respectively

    Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation

    Get PDF
    The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes. The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Here, the authors study an A. fumigatus enzyme that deacetylates GAG in a metal-dependent manner and constitutes a founding member of a new carbohydrate esterase family.Bio-organic Synthesi

    Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≀ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-<it>O-</it>acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals.</p> <p>Results</p> <p>Two <it>Fusarium </it>trichothecene 3-<it>O-</it>acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (<it>Saccharomyces cerevisiae</it>) during a series of small-scale ethanol fermentations using barley (<it>Hordeum vulgare</it>). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red<sup>Âź</sup>, which also consumed galactose when present in the mash.</p> <p>Conclusions</p> <p>This study demonstrates the potential of using yeast expressing a trichothecene 3-<it>O</it>-acetyltransferase to modify DON during commercial fuel ethanol fermentation.</p

    C16 ceramide is crucial for triacylglycerol-induced apoptosis in macrophages

    Get PDF
    Triacylglycerol (TG) accumulation caused by adipose triglyceride lipase (ATGL) deficiency or very low-density lipoprotein (VLDL) loading of wild-type (Wt) macrophages results in mitochondrial-mediated apoptosis. This phenotype is correlated to depletion of Ca2+ from the endoplasmic reticulum (ER), an event known to induce the unfolded protein response (UPR). Here, we show that ER stress in TG-rich macrophages activates the UPR, resulting in increased abundance of the chaperone GRP78/BiP, the induction of pancreatic ER kinase-like ER kinase, phosphorylation and activation of eukaryotic translation initiation factor 2A, the translocation of activating transcription factor (ATF)4 and ATF6 to the nucleus and the induction of the cell death executor CCAAT/enhancer-binding protein homologous protein. C16:0 ceramide concentrations were increased in Atgl–/– and VLDL-loaded Wt macrophages. Overexpression of ceramide synthases was sufficient to induce mitochondrial apoptosis in Wt macrophages. In accordance, inhibition of ceramide synthases in Atgl–/– macrophages by fumonisin B1 (FB1) resulted in specific inhibition of C16:0 ceramide, whereas intracellular TG concentrations remained high. Although the UPR was still activated in Atgl–/– macrophages, FB1 treatment rescued Atgl–/– macrophages from mitochondrial dysfunction and programmed cell death. We conclude that C16:0 ceramide elicits apoptosis in Atgl–/– macrophages by activation of the mitochondrial apoptosis pathway

    From Food to Offspring Down: Tissue-Specific Discrimination and Turn-Over of Stable Isotopes in Herbivorous Waterbirds and Other Avian Foraging Guilds

    Get PDF
    Isotopic discrimination and turn-over are fundamental to the application of stable isotope ecology in animals. However, detailed information for specific tissues and species are widely lacking, notably for herbivorous species. We provide details on tissue-specific carbon and nitrogen discrimination and turn-over times from food to blood, feathers, claws, egg tissues and offspring down feathers in four species of herbivorous waterbirds. Source-to-tissue discrimination factors for carbon (ή13C) and nitrogen stable isotope ratios (ή15N) showed little variation across species but varied between tissues. Apparent discrimination factors ranged between −0.5 to 2.5‰ for ή13C and 2.8 to 5.2‰ for ή15N, and were more similar between blood components than between keratinous tissues or egg tissue. Comparing these results with published data from other species we found no effect of foraging guild on discrimination factors for carbon but a significant foraging-guild effect for nitrogen discrimination factors

    The Role of MMP7 and Its Cross-Talk with the FAS/FASL System during the Acquisition of Chemoresistance to Oxaliplatin

    Get PDF
    Background: The efficacy of oxaliplatin in cancer chemotherapy is limited by the development of drug resistance. MMP7 has been related to the loss of tumor cell response to cytotoxic agents although the exact mechanism is not fully understood. Moreover, MMP7 is an independent prognosis factor for survival in patients with colorectal cancer. The aim of the present study was to analyze the role of MMP7 and its cross-talk with the Fas/FasL system during the acquisition of oxaliplatin resistance in colon cancer cells. Principal Findings: For this purpose we have developed three different oxaliplatin-resistant cell lines (RHT29, RHCT116 p53+/+, RHCT116 p53−/−) from the parental HT29, HCT116 p53+/+ and HCT116 p53−/− colon cancer cells. MMP7 basal expression was higher in the resistant compared to the parental cell lines. MMP7 was also upregulated by oxaliplatin in both HT29 (p53 mutant) and RHCT116 p53−/− but not in the RHCT116 p53+/+. Inhibition of MMP by 1,10-phenantroline monohydrate or siRNA of MMP7 restores cell sensitivity to oxaliplatin-induced apoptosis in both HT29 and RHCT116 p53−/− but not in the RHCT116 p53+/+. Some of these effects are caused by alterations in Fas receptor. Fas is upregulated by oxaliplatin in colon cancer cells, however the RHT29 cells treated with oxaliplatin showed a 3.8-fold lower Fas expression at the cell surface than the HT29 cells. Decrease of Fas at the plasma membrane seems to be caused by MMP7 since its inhibition restores Fas levels. Moreover, functional analysis of Fas demonstrates that this receptor was less potent in inducing apoptosis in RHT29 cells and that its activation induces MAPK signaling in resistant cells. Conclusions: Taking together, these results suggest that MMP7 is related to the acquisition of oxaliplatin-resistance and that its inhibition restores drug sensitivity by increasing Fas receptor. Furthermore, Fas undergoes a change in its functionality in oxaliplatin-resistant cells inducing survival pathways instead of apoptotic signals

    Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for Gluco- and Galacto- Substituted mannans and Its calcium induced stability

    Get PDF
    Articles in International JournalsThis study investigated the role of CBM35 from Clostridium thermocellum (CtCBM35) in polysaccharide recognition. CtCBM35 was cloned into pET28a (+) vector with an engineered His6 tag and expressed in Escherichia coli BL21 (DE3) cells. A homogenous 15 kDa protein was purified by immobilized metal ion chromatography (IMAC). Ligand binding analysis of CtCBM35 was carried out by affinity electrophoresis using various soluble ligands. CtCBM35 showed a manno-configured ligand specific binding displaying significant association with konjac glucomannan (Ka = 14.3×104 M−1), carob galactomannan (Ka = 12.4×104 M−1) and negligible association (Ka = 12 ”M−1) with insoluble mannan. Binding of CtCBM35 with polysaccharides which was calcium dependent exhibited two fold higher association in presence of 10 mM Ca2+ ion with konjac glucomannan (Ka = 41×104 M−1) and carob galactomannan (Ka = 30×104 M−1). The polysaccharide binding was further investigated by fluorescence spectrophotometric studies. On binding with carob galactomannan and konjac glucomannan the conformation of CtCBM35 changed significantly with regular 21 nm peak shifts towards lower quantum yield. The degree of association (Ka) with konjac glucomannan and carob galactomannan, 14.3×104 M−1 and 11.4×104 M−1, respectively, corroborated the findings from affinity electrophoresis. The association of CtCBM35with konjac glucomannan led to higher free energy of binding (ΔG) −25 kJ mole−1 as compared to carob galactomannan (ΔG) −22 kJ mole−1. On binding CtCBM35 with konjac glucomannan and carob galactomannan the hydrodynamic radius (RH) as analysed by dynamic light scattering (DLS) study, increased to 8 nm and 6 nm, respectively, from 4.25 nm in absence of ligand. The presence of 10 mM Ca2+ ions imparted stiffer orientation of CtCBM35 particles with increased RH of 4.52 nm. Due to such stiffer orientation CtCBM35 became more thermostable and its melting temperature was shifted to 70°C from initial 50°C

    Early life factors and being overweight at 4 years of age among children in Malmö, Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rising rates of obesity and overweight is an increasing public health problem all over the world. Recent research has shown the importance of early life factors in the development of child overweight. However, to the best of our knowledge there are no studies investigating the potential synergistic effect of early life factors and presence of parental overweight on the development of child overweight.</p> <p>Methods</p> <p>The study was population-based and cross-sectional. The study population consisted of children who visited the Child Health Care (CHC) centers in Malmö for their 4-year health check during 2003-2008 and whose parents answered a self-administered questionnaire (n = 9009 children).</p> <p>Results</p> <p>The results showed that having overweight/obese parents was strongly associated with the child being overweight or obese. Furthermore, there was an association between unfavorable early life factors (i.e., mother smoking during pregnancy, presence of secondhand tobacco smoke early in life, high birth weight) and the development of child overweight/obesity at four years of age, while breastfeeding seemed to have a protective role. For example, maternal smoking during pregnancy was associated with an odds ratio (OR) of 1.47 (95% CI: 1.22, 1.76) for overweight and 2.31 (95% CI: 1.68, 3.17) for obesity. The results further showed synergistic effects between parental overweight and exposure to unfavourable early life factors in the development of child overweight.</p> <p>Conclusions</p> <p>The present study shows the importance of early life factors in the development of child overweight and obesity, and thus puts focus on the importance of early targeted interventions.</p

    Aspergillus as a multi-purpose cell factory: current status and perspectives

    Get PDF
    Aspergilli have a long history in biotechnology as expression platforms for the production of food ingredients, pharmaceuticals and enzymes. The achievements made during the last years, however, have the potential to revolutionize Aspergillus biotechnology and to assure Aspergillus a dominant place among microbial cell factories. This mini-review will highlight most recent breakthroughs in fundamental and applied Aspergillus research with a focus on new molecular tools, techniques and products. New trends and concepts related to Aspergillus genomics and systems biology will be discussed as well as the challenges that have to be met to integrate omics data with metabolic engineering attempts
    • 

    corecore