510 research outputs found

    Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents.

    Get PDF
    Wearable acceleration sensors are increasingly used for the assessment of free-living physical activity. Acceleration sensor calibration is a potential source of error. This study aims to describe and evaluate an autocalibration method to minimize calibration error using segments within the free-living records (no extra experiments needed). The autocalibration method entailed the extraction of nonmovement periods in the data, for which the measured vector magnitude should ideally be the gravitational acceleration (1 g); this property was used to derive calibration correction factors using an iterative closest-point fitting process. The reduction in calibration error was evaluated in data from four cohorts: UK (n = 921), Kuwait (n = 120), Cameroon (n = 311), and Brazil (n = 200). Our method significantly reduced calibration error in all cohorts (P 0.05). Temperature correction coefficients were highest for the z-axis, e.g., 19.6-mg offset per 5°C. Further, application of the autocalibration method had a significant impact on typical metrics used for describing human physical activity, e.g., in Brazil average wrist acceleration was 0.2 to 51% lower than uncalibrated values depending on metric selection (P < 0.01). The autocalibration method as presented helps reduce the calibration error in wearable acceleration sensor data and improves comparability of physical activity measures across study locations. Temperature ultization seems essential when temperature deviates substantially from the average temperature in the record but not for multiday summary measures.This is the final version of the article. It first appeared from the American Physiological Society via http://dx.doi.org/10.1152/japplphysiol.00421.201

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Applying refinement to the use of mice and rats in rheumatoid arthritis research

    Get PDF
    Rheumatoid arthritis (RA) is a painful, chronic disorder and there is currently an unmet need for effective therapies that will benefit a wide range of patients. The research and development process for therapies and treatments currently involves in vivo studies, which have the potential to cause discomfort, pain or distress. This Working Group report focuses on identifying causes of suffering within commonly used mouse and rat ‘models’ of RA, describing practical refinements to help reduce suffering and improve welfare without compromising the scientific objectives. The report also discusses other, relevant topics including identifying and minimising sources of variation within in vivo RA studies, the potential to provide pain relief including analgesia, welfare assessment, humane endpoints, reporting standards and the potential to replace animals in RA research

    Mechanisms of Class II correction induced by the crown Herbst appliance as a single-phase Class II therapy : 1 year follow-up

    Get PDF
    Background The objective of this study is to evaluate the skeletal and dentoalveolar effects of the crown Herbst appliance used alone for a single phase of therapy followed by a 1-year observation period. Methods Forty patients (mean age 13.6 ± 1.3 years) with a stable Class I occlusion 1 year following the treatment with the crown Herbst appliance were selected from a prospective sample of 180 consecutively treated Class II patients. No other appliances were used during treatment or during the follow-up period. The dentoskeletal changes were compared with a matched sample of untreated Class II subjects (mean age 13.9 ± 1.6 years). Lateral cephalograms were taken before treatment, after Herbst treatment (1 year), and after 1-year follow-up. Overcorrection was avoided intentionally. Results Treatment produced an increase in mandibular length, a decrease in ANB angle, and a restriction in the vertical growth of posterior maxilla. The maxillary molars moved backward and tipped distally. The lower incisors proclined markedly, and the upper incisors became retroclined. During the follow-up period, the changes primarily were dentoalveolar in nature, with marked rebound of the upper molars and lower incisors, resulting in some increases in overbite and overjet. Conclusions The occlusal correction of Class II malocclusion observed 1 year after the crown Herbst appliance as a single-phase therapy was achieved primary due to the dentoalveolar changes and only limited skeletal change occurred.publishersversionPeer reviewe

    mRNA quantification and clinical evaluation of telomerase reverse transcriptase subunit (hTERT) in intracranial tumours of patients in the island of Crete

    Get PDF
    Telomerase is a reverse transcriptase that maintains telomeres by adding telomeric TTAGGG repeats to the ends of human chromosomes. The aim of this study was to evaluate quantitatively the mRNA expression of telomerase catalytic subunit (hTERT) in different types of intracranial tumours in relation to their histologic pattern and grade and correlate it with progression-free (PFS) and overall survival (OS) of patients. Human telomerase reverse transcriptase mRNA levels were estimated by the use of real time RT–PCR in 68 samples of intracranial tumours. It revealed statistical correlation between hTERT mRNA expression levels and the grade of the tumours (P<0.001). Patients having negative expression of hTERT mRNA had statistically longer PFS (P=0.031) and OS (P=0.047). Cox univariate regression analysis revealed that hTERT mRNA-positive patients had a high and statistically significant risk of relapse (hazard ratio (HR) of 2.24 and P=0.038). In the Cox multivariate regression model, the levels of hTERT mRNA were adjusted for tumour grade and patients age, and since there was statistically significant relationship between the levels of hTERT mRNA and the grade of the tumours (P=0.003 or P=0.006, respectively), hTERT mRNA levels could not be considered as an independent prognostic factor for PFS or OS

    A Trouble Shared Is a Trouble Halved: Social Context and Status Affect Pain in Mouse Dyads

    Get PDF
    In mice behavioral response to pain is modulated by social status. Recently, social context also has been shown to affect pain sensitivity. In our study, we aimed to investigate the effects of interaction between status and social context in dyads of outbred CD-1 male mice in which the dominance/submission relationship was stable. Mice were assessed for pain response in a formalin (1% concentration) test either alone (individually tested-IT), or in pairs of dominant and subordinate mice. In the latter condition, they could be either both injected (BI) or only one injected (OI) with formalin. We observed a remarkable influence of social context on behavioral response to painful stimuli regardless of the social status of the mice. In the absence of differences between OI and IT conditions, BI mice exhibited half as much Paw-licking behavior than OI group. As expected, subordinates were hypoalgesic in response to the early phase of the formalin effects compared to dominants. Clear cut-differences in coping strategies of dominants and subordinates appeared. The former were more active, whereas the latter were more passive. Finally, analysis of behavior of the non-injected subjects (the observers) in the OI dyads revealed that dominant observers were more often involved in Self-grooming behavior upon observation of their subordinate partner in pain. This was not the case for subordinate mice observing the pain response of their dominant partner. In contrast, subordinate observers Stared at the dominant significantly more frequently compared to observer dominants in other dyads. The observation of a cagemate in pain significantly affected the observer's behavior. Additionally, the quality of observer's response was also modulated by the dominance/submission relationship

    DNA Damage Triggers Genetic Exchange in Helicobacter pylori

    Get PDF
    Many organisms respond to DNA damage by inducing expression of DNA repair genes. We find that the human stomach pathogen Helicobacter pylori instead induces transcription and translation of natural competence genes, thus increasing transformation frequency. Transcription of a lysozyme-like protein that promotes DNA donation from intact cells is also induced. Exogenous DNA modulates the DNA damage response, as both recA and the ability to take up DNA are required for full induction of the response. This feedback loop is active during stomach colonization, indicating a role in the pathogenesis of the bacterium. As patients can be infected with multiple genetically distinct clones of H. pylori, DNA damage induced genetic exchange may facilitate spread of antibiotic resistance and selection of fitter variants through re-assortment of preexisting alleles in this important human pathogen
    corecore