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van Hees VT, Fang Z, Langford J, Assah F, Mohammad A, da
Silva IC, Trenell MI, White T, Wareham NJ, Brage S. Autocali-
bration of accelerometer data for free-living physical activity assess-
ment using local gravity and temperature: an evaluation on four
continents. J Appl Physiol 117: 738–744, 2014. First published
August 7, 2014; doi:10.1152/japplphysiol.00421.2014.—Wearable
acceleration sensors are increasingly used for the assessment of
free-living physical activity. Acceleration sensor calibration is a
potential source of error. This study aims to describe and evaluate an
autocalibration method to minimize calibration error using segments
within the free-living records (no extra experiments needed). The
autocalibration method entailed the extraction of nonmovement peri-
ods in the data, for which the measured vector magnitude should
ideally be the gravitational acceleration (1 g); this property was used
to derive calibration correction factors using an iterative closest-point
fitting process. The reduction in calibration error was evaluated in data
from four cohorts: UK (n � 921), Kuwait (n � 120), Cameroon (n �
311), and Brazil (n � 200). Our method significantly reduced cali-
bration error in all cohorts (P � 0.01), ranging from 16.6 to 3.0 mg in
the Kuwaiti cohort to 76.7 to 8.0 mg error in the Brazil cohort.
Utilizing temperature sensor data resulted in a small nonsignificant
additional improvement (P � 0.05). Temperature correction coeffi-
cients were highest for the z-axis, e.g., 19.6-mg offset per 5°C.
Further, application of the autocalibration method had a significant
impact on typical metrics used for describing human physical activity,
e.g., in Brazil average wrist acceleration was 0.2 to 51% lower than
uncalibrated values depending on metric selection (P � 0.01). The
autocalibration method as presented helps reduce the calibration error
in wearable acceleration sensor data and improves comparability of
physical activity measures across study locations. Temperature ulti-
zation seems essential when temperature deviates substantially from
the average temperature in the record but not for multiday summary
measures.

calibration; accelerometry; physical activity; epidemiology; GENE-
Activ

WEARABLE ACCELEROMETERS ARE increasingly used in the assess-
ment of physical activity (2, 4, 6). In recent years accelerom-
eters have become available that are feasible for long-term
monitoring of behavior in population studies, while at the same
time being capable of storing weeklong data in g-units (1

standard g � 9.80665 m/s2) at a sample frequency high enough
to capture the main frequencies of body movement, referred to
as raw data accelerometry (12). Population studies collecting
raw accelerometer data include surveillance studies like
NHANES (26) in the U.S. and national biobanks such as UK
Biobank (27).

An acceleration sensor works on the principle that acceler-
ation is captured mechanically and converted into an electrical
signal, which depending on the sensor type is either a voltage,
a resistance, or a capacitance (13). The relationship between
the electrical signal and the acceleration is usually assumed to
be linear, involving an offset and a gain factor. We shall refer
to the establishment of the offset and gain factor as the sensor
calibration procedure (5, 18). Accelerometers are usually cal-
ibrated as part of the manufacturing process under nonmove-
ment conditions using the local gravitational acceleration as a
reference (5, 18). The manufacturer calibration can later be
evaluated by holding each sensor axis parallel (up and down)
or perpendicular to the direction of gravity; readings for each
axis should be �1 and 0 g, respectively (5, 18).

However, this procedure can be cumbersome in studies with
a high throughput. Furthermore, such a calibration check will
not be possible for data that have been collected in the past and
for which the corresponding accelerometer device does not
exist anymore. Techniques have been proposed that can check
and correct for calibration error based on the collected triaxial
accelerometer data in the participant’s daily life without addi-
tional experiments, referred to as autocalibration (6a, 8–10,
19). The general principle of these techniques is that a record-
ing of acceleration is screened for nonmovement periods. Next,
the moving average over the nonmovement periods is taken
from each of the three orthogonal sensor axes and used to
generate a three-dimensional ellipsoid representation that
should ideally be a sphere with radius 1 g, see example in Fig.
1. Here, deviations between the radius of the three-dimensional
ellipsoid and 1 g (ideal calibration) can then be used to derive
correction factors for sensor axis-specific calibration error (6a,
8–10, 19).

Previously published work on autocalibration techniques
focused on the technical description and proof of concept but
did not demonstrate feasibility and accuracy in wrist acceler-
ometer data collected under real study conditions, involving
participants under free-living conditions (daily life) and in a
diverse sample of the global population (6a, 8–10, 19). Fur-
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thermore, it remains unknown whether autocalibration has a
significant impact on acceleration metrics typically used for
physical activity assessment.

Temperature has been identified as a potential source of
calibration error in low cost acceleration sensors (20). The
specification sheet of the acceleration sensor chip used in the
GENEActiv accelerometer (ADXL345; Analog Devices) as
used in this study, indicates that a change of 1°C relative to
25°C could result in a 0.4 to 1.2 mg (1 g � 1,000 mg) change
in acceleration value (1). It could therefore be hypothesized
that the availability of temperature information alongside mea-
surement of acceleration may aid the autocalibration process.

The current study aims to describe an autocalibration
method that can be configured to take into account a potential
temperature dependency of the sensor’s response to accelera-
tion. The second aim is to implement and evaluate the auto-
calibration method in a diverse sample of the global popula-
tion. The third and final aim is to demonstrate the degree to
which application of the autocalibration method has any sig-
nificant impact on metrics derived for physical activity assess-
ment.

METHODS

Population data. The autocalibration method was evaluated based
on data collected with wrist-worn raw accelerometry in subsamples of
epidemiological cohorts from Africa, Europe, South America, and the
Middle-East, representing locations with different gravity. Cohorts
included: The Fenland Study (Cambridgeshire, UK) (21), a repeated
cross-sectional survey of the Cameroon Physical Activity Study (3),
the Kuwait Wellbeing Study, and the 1993 Pelotas birth cohort

(Brazil) (28). The data subsamples in each cohort span most local
seasons and represent very diverse populations, lifestyles, and envi-
ronmental conditions. Basic cohort characteristics are described in
Table 1.

The same accelerometer brand was used in all cohorts (GENEActiv;
Activinsights, Kimbolton, UK). This accelerometer includes a triaxial
acceleration sensor (ADXL345) with a �8-g dynamic range and a
12-bit resolution and a temperature sensor (MCP9700T). Most of the
devices used in the UK and Brazil cohort were older (lower serial
number) than the devices used in the Kuwait and Cameroon cohorts.
In all cohorts, participants were asked to wear the accelerometer on
their nondominant wrist during sleeping and waking hour. All partic-
ipants provided informed consent, and each study was approved by
the local ethics committee.

Autocalibration method. Two versions of the autocalibration
method were designed and evaluated; one based on acceleration data
only (C1) and one based on both acceleration and temperature (C2).
For every consecutive time window of 10 s in a particular data record,
the following signal features were extracted: average acceleration per
axis, standard deviations in the acceleration per axis, and average
temperature. For the calibration procedure, only time windows for
which the standard deviation was �13 mg in all three axes were
retained. Here, 13 mg was selected just above the empirically derived
baseline (noise) standard deviation of 10 mg to retain only nonmove-
ment periods. The resulting set of time windows, or calibration
epochs, for each of the three axes can be presented in a three-
dimensional space as an ellipsoid (22), an example of which is shown
in Fig. 1. The deviation between 1 g and the Euclidean norm

(�ax
2�ay

2�az
2) of the acceleration of the three axes is an indication

of calibration error. Next, the axis-specific calibration for C1 can be
defined as: si

’(t) � di � si(t)·ai. Here, si(t) and si
’(t) correspond to the

acceleration signal before and after correction, respectively, i is the

Fig. 1. Example 3-dimensional ellipsoidal data
based on a 6-day measurement. Also shown are
2-dimensional projections; the circles (radius � 1 g)
indicate the shape of the data if perfect calibration
would apply.
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sensor axis (x, y, or z), t is the time point, di is the offset, and ai is the
gain factor. Six parameters are optimized for this model C1, while
minimizing the average calibration error defined as absolute differ-
ences between 1 g and vector magnitudes (Euclidean norms) calcu-
lated across all calibration epochs. If temperature is taken into account
(C2) the formula is: si

’(t) � di � si(t)·ai � [T(t) � c]·mi. Here, T(t) is
the temperature at time point t, c is the average temperature in the
ellipsoidal data as used for the autocalibration procedure, and mi is the
axis specific temperature-related offset corrections factor. The average
temperature acts like a fixed reference point relative to which di, ai,
and mi (9 parameters) are optimized. Mathematically, constant c could
have been merged with di to shorten the equation but we have kept
them separate to allow direct comparison of di parameters between the
two autocalibration models.

An iterative closest point fitting process (ICP) of the moving
average values to a sphere (C1) or a hypercylinder (C2) was used to
optimize the six (C1) or nine (C2) calibration correction factors,
respectively. Here, the hypercylinder corresponds to the 1-g sphere
augmented with a linear temperature offset adjustment for C2. The
procedure was followed by downweighting outliers to minimize the
impact of nonstationary data not being excluded based on the 13-mg
threshold as mentioned earlier. Here, the weighting was calculated as
1-g divided by the absolute difference between the Euclidean norm
corresponding to a 10-s calibration window (1 point on the ellipsoid)
and 1 g with 100 being the maximum weighting. Consequently, all
data points with �10-mg calibration error had a weighting of 100 (1
g/0.01 g � 100). The weighting was updated at every stage of the
iterative process. The ICP starting points were chosen based on the
assumption that the optimal calibration factors is the set representing
the local minimum error nearest to perfect factory calibration, with
di � 0, ai � 1, and mi � 0. The ICP was limited to a maximum of
1,000 iterations and terminated sooner if iterative change in error was
�1�10 g.

To ensure a meaningful and robust autocalibration, it was only
executed when the calibration ellipsoid was sufficiently sparsely
populated with data points (calibration epochs). For this evaluation,
we used a sparseness criteria of at least one ellipsoid value higher than
300 mg and at least one value lower than �300 mg for each of the
three sensor axes. Only measurements were considered that lasted for
at least 24 h as shorter measurements are commonly excluded when
assessing habitual physical activity during free-living conditions.

To minimize signal processing time, the autocalibration method
initially only uses the first 72 h (3 days) of a measurement file based
on which calibration error reduction is evaluated. If the file length is
�3 days, then all available data are used. If calibration error is not
reduced to �10 mg or if the �300-mg criteria for ellipsoid data

sparseness is not met, additional chunks of 12-h data are iteratively
added until either error and sparseness criteria are met or until the end
of the file is reached. The criterion of 10 mg was considered close to
the resolution of the data (3.9 mg) and a realistic target based on pilot
tests. Calibration error below the sensor resolution is theoretically
possible, but these calibration errors may not be distinguishable from
the impact of data resolution boundaries. Therefore, a calibration error
reduction to �10 mg was considered acceptable. If the calibration
error after autocalibration was higher than before autocalibration, then
correction factors were replaced by default values 1 and 0 for gain and
offset, respectively. The latter was done to avoid a negative influence
of autocalibration on the data.

The method has been released as function g.calibrate in R-package
GGIR, which currently works with binary data collected with the
accelerometer used in the current study as well as its predecessor,
GENEA (14). Additionally, an extract of the R-code related to the ICP
fitting process is provided in the APPENDIX.

Evaluation. The absolute difference between 1 g and the Euclidean
norm of the values of the three axes was averaged per measurement
file (1 file � 1 participant) and used as an indicator of calibration error
before autocalibration (C0), following autocalibration without temper-
ature compensation (C1), and following autocalibration with temper-
ature compensation (C2).

Further, we assessed the impact of autocalibration on population
estimates of physical activity using two commonly used metrics of
body movement: the Euclidean Norm Minus One with negative values
rounded up to zero (ENMO) and band-pass filtering of three axis
followed by Euclidean Norm of the resulting signals (BFEN), as
previously described (11, 13, 25). BFEN was applied with a fourth
order band-pass Butterworth filter with cut-off frequencies 0.5 and 15
Hz. Metric ENMO is similar in design compared with a metric used
by colleagues, named SVMgs (7, 23, 29). See Hildebrand et al. (15)
for a discussion on the subtle differences between SVMgs and
ENMO.

Here, we looked at the average metric output and its distribution
over each participant’s measurement record based on 5-s epoch
averages. The impact on the distribution was quantified as changes to
the 5th, 25th, 50th, 75th, 95th, and 97.92nd percentiles. The latter
percentile (97.92) corresponds to the 30 most active minutes in a day.
All participant-level values were summarized as mean (SD) across
each cohort. Data cleaning stages, including nonwear detection, were
applied as reported previously (11, 14, 24). Detected monitor wear
duration was used to evaluate whether monitor wear duration plays a
role in the success of the autocalibration procedure.

Finally, to estimate the relative importance of correcting offset or
gain factors we selected a random sample of 20 accelerometer record-

Table 1. Cohort characteristics

Cohort UK Kuwait Cameroon Brazil

n (male/female) 407/514 72/48 144/167 100/100
Age, yr 50.3 (7.2) 43.0 (10.7) 40.3 (12.6) 18.4 (18–19)†
Weight, kg 77.1 (16.1) 81.8 (18.3) 76.8 (15.2) 65.8 (14.7)
Height, m 170.0 (9.6) 167.5 (8.5) 166.7 (8.4) 167.3 (8.3)
BMI, kg/m2 26.5 (4.6) 29.0 (5.3) 28.2 (9.6) 23.4 (4.7)
Monitor protocol, days 6 7 7 6
Sample frequency, Hz 60 50 100 85.7
Geographic latitude, ° 52.2 N 29.4 N 5.1 N 31.8 S
Altitude, m 6 20 726/1,600‡ 7
Magnitude of gravity, m·s�2* 9.8127 9.7928 9.7807 9.7947
Difference in gravity relative to UK, mg 0.0 �2.0 �3.3 �1.8
Seasonal distribution

In Dec-Feb 23% 32% 47% 39%
In Mar-May 24% 27% 0% 10%
In Jun-Aug 30% 41% 13% 0%
In Sep-Nov 23% 1% 41% 50%

Data are expressed as mean (SD). BMI, body mass index. *According to calculation with World Geodetic System 1984; †age range; ‡Yaounde and Bamenda.
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ings from the Pelotas cohort and investigated how autocalibration
performance is affected when optimizing only offset or gain, with the
corresponding other set of factors fixed to 1 (gain) or 0 g (offset),
respectively.

Statistics. All statistical analyses were conducted in R (http://
cran.r-project.org/). Wilk’s lambda test was used to compare the three
autocalibration configurations across all percentiles. If Wilk’s lambda
test indicated a significant difference, then repeated measures
ANOVA was used to compare the three autocalibration configurations
per metric, using the function lme from the nlme-package and the
function anova from the stats-package (20a). Post hoc pair-wise
Tukey tests were performed using the function glht from the mult-
comp package (16). Significance was set at P � 0.05.

RESULTS

Average calibration correction factors are reported in Table 2.
Application of the autocalibration method significantly re-
duced calibration error in all cohorts (P � 0.01), with improve-
ments being greatest in the Brazilian cohort (from 76.7 to 8.0
mg) and smallest in the Kuwaiti cohort (from 16.6 to 3.0 mg;
see Table 3). However, no significant further reduction in
calibration error was observed in any of the four cohorts
between autocalibration with temperature utilization (C2),
compared with that without temperature utilization (C1) (P �
0.05; see Table 3). The percentage of files with calibration

error under 10 mg was 6.1, 94.4, and 99.0% for C0, C1, and C2

respectively (Pearson’s Chi-squared: �2 � 3,816.0, df � 2,
P � 0.0001). An animation of the calibration ellipsoid before
and after calibration can be found on our website: http://
www.mrc-epid.cam.ac.uk/research/resources.

Application of the autocalibration method had a significant
impact on the average and distribution of acceleration metric
output in each of the four cohorts (F � 5.8, P � 0.001). The
magnitude of the difference between C0 and C1 for metric
BFEN was systematically �1 mg, which was in contrast to
metric ENMO for which differences of 20 mg and higher were
observed between C0 and C1 (see Tables 4 and 5). Post hoc
Tukey analyses revealed no significant difference in metric
output between C1 and C2, except for the lower range in the
distribution of acceleration values in the UK cohort, see Tables
4 and 5.

The minimum within-person temperature range observed
within the ellipsoid data was 8.8, 9.7, 6.4, and 7.1°C for UK,
Kuwait, Cameroon, and Brazil, respectively.

For the evaluation of the relative importance of offset and
gain (Pelotas subset), autocalibration based on only offset
correction or only gain correction reduced a 65.0 � 26.7 mg

Table 2. Average calibration correction factors

Location/
Correction

Factor x y z

UK
a 0.99824 (0.0046) 0.99777 (0.01079) 1.00133 (0.01068)
d �0.00738 (0.00851) �0.00494 (0.0164) �0.01177 (0.03719)
m �0.00001 (0.00083) 0.00022 (0.00128) 0.00392 (0.00134)

Kuwait
a 1.00453 (0.00295) 1.0001 (0.00404) 1.00400 (0.00685)
d �0.00124 (0.00280) 0.00042 (0.00303) 0.02321 (0.01380)
m 0.00005 (0.00049) 0.00031 (0.00062) 0.00101 (0.00081)

Cameroon
a 1.00285 (0.00223) 0.99729 (0.00477) 1.00437 (0.00247)
d 0.00987 (0.00725) 0.00862 (0.00921) 0.07145 (0.02686)
m �0.00009 (0.00093) 0.00103 (0.00142) 0.00179 (0.00142)

Brazil
a 0.99953 (0.00756) 0.98992 (0.01386) 1.00356 (0.01198)
d 0.02570 (0.02217) 0.01010 (0.02360) 0.10545 (0.03534)
m 0.00001 (0.00169) 0.00067 (0.00231) 0.00365 (0.00106)

Data are expressed as mean (SD). d, offset (g); a, gain; m, temperature-
dependent offset (g/°C).

Table 3. Calibration error across study locations

UK Kuwait Cameroon Brazil

N 921 120 311 200
Calibration error, mg: C0 25.7 (13.9) 16.6 (7.1) 47.3 (16.3) 76.7 (24.0)
Calibration error, mg: C1 7.4 (2.9) 3.0 (0.7) 3.0 (1.2) 8.0 (2.3)
Calibration error, mg: C2 4.9 (2.0) 2.5 (0.6) 2.7 (1.1) 5.3 (1.5)
F value, P � 0.001 for all 2,022* 375* 2,286* 1,756*
n with error �10 mg (C0;

C1; C2) 862; 63; 16 94; 0; 0 301; 0; 0 200; 24; 0
n with �72 h (3 days)

of wear 24 10 4 6

C0, no autocalibration; C1, autocalibration without temperature utilization;
C2, autocalibration with temperature utilization. *Significant pair-wise differ-
ence between C0–C1 and C0–C2 (Tukey test, P � 0.001). No significant
difference was observed between C1 and C2 (Tukey test, P � 0.05).

Table 4. Impact of autocalibration on daily wrist
acceleration calculated with metric ENMO

Cohort/Metric C0 C1 C2 P Value*

UK
Daily average 34.4 (8.4) 31.8 (11.8) 31.3 (8.3) �0.001 �

P5 6.2 (6.9) 4.5 (1.7) 3.6 (1.8) �0.001 �

P25 13.7 (9.9) 9.4 (3.3) 7.7 (3.5) �

P50 27.1 (11.6) 24 (7.4) 23.7 (7.6) �

P75 46.4 (14.8) 44.5 (12.2) 44.6 (12.3) �

P95 87.4 (29.6) 86.1 (28.4) 86.5 (28.4) �

P97.92 113.9 (49) 112.7 (48) 113 (48) �

Kuwait
Daily average 28.6 (8.1) 24.6 (9.3) 24.5 (8.1) �0.001 �

P5 5.7 (4.2) 2.8 (1.0) 2.7 (0.9) �0.001 �

P25 12 (6.2) 6.3 (2.6) 6.1 (2.6) �

P50 21.6 (7.8) 17.3 (6.1) 17.3 (6.1) �

P75 36.4 (11.5) 33.2 (10.6) 33.2 (10.6) �

P95 74.4 (36) 72.2 (35.9) 72.1 (36.0) �

P97.92 100.9 (66.4) 99 (66.5) 98.9 (66.6) �

Cameroon
Daily average 53.3 (16.4) 34.5 (18.8) 34.5 (16.4) �0.001 �

P5 18.1 (8.5) 3.6 (0.9) 3.5 (0.9) �0.001 �

P25 32.4 (11.1) 8.4 (3.6) 8.3 (3.7) �

P50 45.9 (12.4) 25.3 (7.5) 25.3 (7.6) �

P75 65.8 (29.3) 48.8 (28.6) 48.8 (28.5) �

P95 112.8 (71.6) 98.9 (72.4) 99 (72.3) �

P97.92 143.7 (93.1) 130.7 (93.6) 130.7 (93.6) �

Brazil
Daily average 80.6 (12.5) 39.7 (19.7) 39.5 (12.4) �0.001 �

P5 33.6 (15.3) 4.6 (1.7) 3.7 (1.6) �0.001 �

P25 55.2 (18.6) 11.6 (5.4) 10.4 (5.5) �

P50 74.2 (19.7) 29 (10.7) 28.8 (11.0) �

P75 96.6 (22.5) 54.3 (17.4) 54.7 (17.8) �

P95 148.5 (37.7) 111.1 (37.5) 111.8 (37.4) �

P97.92 183.4 (55) 147.7 (55.7) 148.5 (55.7) �

Data are presented as sample mean (SD) and percentiles based on 5-s epoch
averages; Pk � kth percentile. ENMO (in mg), the Euclidean Norm Minus
One; C0, no autocalibration; C1, autocalibration without temperature; C2,
autocalibration with temperature. *P value for ANOVA and Wilk’s lambda; P
values for Tukey test are indicated with the following symbols: �, significant
pair-wise differences between C0–C1 and C0–C2; Œ, significant pair-wise
differences for C0–C1 and C1–C2; �, significant pair-wise difference for
C0–C1, C0–C2, and C1–C2.
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calibration error (C0) to 12.4 � 12.7 and 51.8 � 31.2 mg,
respectively. Additional ultization of temperature reduced
these calibration errors to 10.2 � 13.3 and 45.0 � 23.9 mg,
respectively, while optimizing both offset and gain resulted in
calibration errors of 4.6 � 1.3 and 7.7 � 2.7 mg for C2 and C1,
respectively.

DISCUSSION

The autocalibration method as presented allows for a signif-
icant reduction in average calibration error under a wide range
of study conditions. Temperature ultization did not result in a
significant further reduction of average calibration error for the
measures selected. However, inspection of the derived temper-
ature offset correction factors (Table 2) indicates that temper-
ature ultization could be essential for sections of the signal with
temperature conditions far away from the average temperature.
For example, in the UK cohort the average temperature offset
correction factor for the z-axis was 0.00392 (Table 2), which
given a temperature difference of 5°C would result in a change
of acceleration of 0.0196 g (5 	 0.00392 g). A value of 19.6
mg may be considered high in the context of the acceleration

value distribution as provided in Tables 4 and 5. The signifi-
cant difference as found between C1 and C2 in the lower end of
the metric value distribution in the UK cohort hints at an
impact of temperature ultization that will only be visible in the
most inactive parts of a day. Considering that sleep is likely to
take up �25% of a day, it seems unlikely that the temperature
dependency of the 5th and 25th percentiles relates to wake-
time behavior. Instead, accounting for temperature dependency
may help to improve estimates of monitor nonwear time and
the detection of sleep stages in future research.

The implementation of the autocalibration method had a
significant impact on the average and distribution of metric
outputs; however, substantially more so for metric ENMO
compared with metric BFEN. In our previous study we ob-
served that metrics ENMO and BFEN are highly correlated but
not identical (11). Metric ENMO may be more appropriate for
energy expenditure estimation and easier for researchers to
describe, replicate, and interpret (11). In addition, the fre-
quency filtering as part of metric BFEN effectively reduces
calibration offset error, which explains why the autocalibration
procedure as evaluated here shows only minor impact on these
estimates. Temperature changes tend to be slow, which the
band-pass filter would catch and remove as low frequency
components (11). We conclude from this that autocalibration
will have an important impact on studies that rely on average
and distribution characteristics of metric ENMO but much less
so for metric BFEN. Note that these findings should not be
confused for the validity of metric BFEN or ENMO.

The strong relative importance of offset correction as seen in
the subsample of 20 individuals combined with the fairly
constant absolute difference between the cohort percentiles
corresponding to C0 and to C1 (Tables 4 and 5) indicates that
the offset calibration has a bigger impact compared with gain
calibration. Translating this observation to physical activity
research means that the impact of calibration error and there-
fore the benefit of autocalibration will be relatively high for
physical activities involving low acceleration and relatively
low for activities involving high magnitude accelerations.

Results indicate that the autocalibration method works under
a wide range of experimental conditions, spanning different
geographical latitudes, different seasons affecting temperature
variation during the day, different populations affecting move-
ment and activity patterns, different built environments, and
different adult age groups. Nonetheless, the dataset as pre-
sented is insufficient to investigate the causal relationship
between specific study conditions and calibration error. The
difference in the precision gain of autocalibration between UK
and Brazil on the one hand and Cameroon and Kuwait on the
other hand may indicate that the relatively newer devices used
for Cameroon and Kuwait have less calibration error. Again, a
lack of standardized conditions complicates this comparison. It
is also important to note that the proposed method effectively
expresses all data relative to local gravity that has known
geographical variation; one would need to multiply with the
magnitude of local gravity to convert to absolute acceleration
in meters per second squared. Despite the challenges in directly
comparing the four cohorts, the results stratified by cohort
illustrate that the method succeeds in reducing error in each of
the four study settings and with an impact on typical physical
activity summary measures proportional to baseline calibration
error (C0).

Table 5. Impact of autocalibration on daily wrist
acceleration calculated with metric BFEN

Cohort/Metric C0 C1 C2 P Value*

UK
Daily average 122.7 (25.5) 122.5 (25.5) 122.6 (25.5) �0.001 �

P5 10.5 (1.9) 10.5 (1.9) 10.5 (1.9) �0.001 Œ
P25 25 (15.0) 24.9 (14.9) 25 (14.9) �

P50 113.6 (31.3) 113.5 (31.2) 113.5 (31.2) �

P75 189.4 (42.5) 189.2 (42.4) 189.2 (42.4) �

P95 295.7 (57.5) 295.3 (57.5) 295.4 (57.5) �

P97.92 344.4 (73.7) 344 (73.6) 344.1 (73.7) �

Kuwait
Daily average 104.4 (23.5) 104.7 (23.5) 104.7 (23.5) �0.001 �

P5 9.1 (3.1) 9.1 (3.1) 9.1 (3.1) �0.001 �

P25 28.7 (17.4) 28.8 (17.5) 28.8 (17.5) �

P50 91.2 (27.3) 91.4 (27.4) 91.4 (27.4) �

P75 155 (37.5) 155.4 (37.5) 155.4 (37.5) �

P95 257 (62.4) 257.7 (62.4) 257.7 (62.4) �

P97.92 306.3 (77.7) 307.1 (77.7) 307.1 (77.7) �

Cameroon
Daily average 125.6 (24.4) 125.9 (24.3) 125.8 (24.4) �0.001 �

P5 8.7 (3.9) 8.7 (3.9) 8.7 (3.9) �0.001 �

P25 39.2 (19.6) 39.3 (19.6) 39.3 (19.6) �

P50 118 (27.9) 118.2 (27.9) 118.2 (27.9) �

P75 187.6 (36.6) 188 (36.7) 187.9 (36.7) �

P95 294.2 (62.4) 294.7 (62.6) 294.7 (62.5) �

P97.92 346.5 (83.0) 347.2 (83.1) 347.1 (83.1) �

Brazil
Daily average 138.5 (31.1) 138.2 (31.1) 138.2 (31.1) �0.001 �

P5 10.1 (5.3) 10.2 (5.3) 10.1 (5.3) �0.001 ns
P25 42.1 (27.1) 42.1 (27.1) 42.1 (27.1) �

P50 126.8 (38.3) 126.6 (38.3) 126.6 (38.3) �

P75 208.6 (44.5) 208.1 (44.6) 208.2 (44.5) �

P95 328.3 (58.3) 327.5 (58.0) 327.6 (58.2) �

P97.92 383.6 (71.5) 382.6 (71.2) 382.7 (71.4) �

Data are presented as sample mean (SD) and percentiles based on 5-s epoch
averages; Pk � kth percentile. BFEN (in mg), band-pass filtering of t3 axis
followed by Euclidean Norm of the resulting signals. C0, no autocalibration;
C1, autocalibration without temperature; C2, autocalibration with temperature;
*P value for ANOVA and Wilk’s lambda; P values for Tukey-test are
indicated with the following symbols: �, significant pair-wise differences
between C0–C1 and C0–C2; Œ, significant pair-wise differences for C0–C1 and
C1–C2; �, significant pair-wise difference for C0–C1, C0–C2, and C1–C2; ns, P
value for ANOVA �0.05.

742 Autocalibration of Free-Living Accelerometer Data • van Hees VT et al.

J Appl Physiol • doi:10.1152/japplphysiol.00421.2014 • www.jappl.org



The current study was done with wrist-worn accelerometers.
Compared with other body locations wrist attachment may
allow for easier collection of sparse ellipsoidal data and by that
enhancing the autocalibration process. Therefore, caution is
needed when implementing this method on data collected from
other body locations.

In conclusion, the autocalibration method as presented re-
duces the calibration error in acceleration data from wrist-worn
sensors as collected on four continents. Temperature ultization
seems essential for those sections of the signal where temper-
ature deviates substantially from the average temperature, but
less so for overall summary measures related to the average
and distribution of the magnitude of acceleration over several
days.

APPENDIX I: EXTRACT OF R-CODE RELATED TO ICP
PROCEDURE FROM R-PACKAGE GGIR

The variable “input” is the average acceleration per axis per epoch
provided as a matrix with three columns corresponding to the three
axis. Variable “inputtemp” is the average temperature per epoch
provided as a matrix with the temperature values replicated in three
columns.

meantemp � mean(as.numeric(inputtemp[,1]))
inputtemp � inputtemp - meantemp
translate � rep(0, ncol(input)); gain � rep(1, ncol(input))
tempoffset � rep(0, ncol(input))
weights � rep(1, nrow(input))
res � Inf
maxiter � 1000
tol � 1e-10
for (iter in 1:maxiter) {
curr � gain(input, center � -translate, gain � 1/gain) �
gain(inputtemp, center � F, gain � 1/tempoffset)
closestpoint � curr/sqrt(rowSums(curr^2))
k � 1
translatech � rep(0, ncol(input)); gainch � rep(1,ncol(input))
toffch � rep(0, ncol(inputtemp))
for (k in 1:ncol(input)){
fobj � lm.wfit(cbind(1, curr[,k],inputtemp[,k]),
closestpoint[,k, drop � F], w � weights)
if (use.offset �� TRUE) translatech[k] � fobj$coef[1]
if (use.gain �� TRUE) gainch[k] � fobj$coef[2]
if (use.temp �� TRUE) toffch[k] � fobj$coeff[3]
curr[,k] � fobj$fitted.values
}
translate � translate � translatech / (gain * gainch)
if (use.temp �� TRUE) tempoffset � tempoffset * gainch �

toffch
gain � gain * gainch
res � c(res, 3 * mean(weights*(curr-closestpoint)^2/sum-

(weights)))
weights � pmin(1/sqrt(rowSums((curr - closestpoint)^2)), 1/0.01)
if (abs(res[iter�1] - res[iter]) � tol) break
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