41 research outputs found

    Squirrelpox virus: assessing prevalence, transmission and environmental degradation

    Get PDF
    Red squirrels (Sciurus vulgaris) declined in Great Britain and Ireland during the last century, due to habitat loss and the introduction of grey squirrels (Sciurus carolinensis), which competitively exclude the red squirrel and act as a reservoir for squirrelpox virus (SQPV). The disease is generally fatal to red squirrels and their ecological replacement by grey squirrels is up to 25 times faster where the virus is present. We aimed to determine: (1) the seropositivity and prevalence of SQPV DNA in the invasive and native species at a regional scale; (2) possible SQPV transmission routes; and, (3) virus degradation rates under differing environmental conditions. Grey (n = 208) and red (n = 40) squirrel blood and tissues were sampled. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) techniques established seropositivity and viral DNA presence, respectively. Overall 8% of squirrels sampled (both species combined) had evidence of SQPV DNA in their tissues and 22% were in possession of antibodies. SQPV prevalence in sampled red squirrels was 2.5%. Viral loads were typically low in grey squirrels by comparison to red squirrels. There was a trend for a greater number of positive samples in spring and summer than in winter. Possible transmission routes were identified through the presence of viral DNA in faeces (red squirrels only), urine and ectoparasites (both species). Virus degradation analyses suggested that, after 30 days of exposure to six combinations of environments, there were more intact virus particles in scabs kept in warm (25°C) and dry conditions than in cooler (5 and 15°C) or wet conditions. We conclude that SQPV is present at low prevalence in invasive grey squirrel populations with a lower prevalence in native red squirrels. Virus transmission could occur through urine especially during warm dry summer conditions but, more notably, via ectoparasites, which are shared by both species

    Intakes of fruits and vegetables, carotenoids and vitamins A, E, C in relation to the risk of bladder cancer in the ATBC cohort study

    Get PDF
    We examined the relation between dietary fruit and vegetables, carotenoids and vitamin intakes and the risk of bladder cancer among male smokers in a prospective cohort study. Over a median of 11 years, we followed 27 111 male smokers aged 50–69 years who were initially enrolled in the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study. During this period, 344 men developed bladder cancer. All of these men had completed a 276-food item dietary questionnaire at baseline. Cox proportional hazards models were used to estimate the relative risks and 95% confidence intervals and to simultaneously adjust for age, smoking history, energy intake and intervention group. Consumption of fruits and vegetables was not associated with the risk of bladder cancer (relative risk=1.28; 95% confidence intervals CI: 0.89–1.84, for highest vs lowest quintile). Similarly, no associations were observed for groups of fruits or vegetables (berries and cruciferous vegetables), or for specific fruits and vegetables. Dietary intakes of alpha-carotene, beta-carotene, lycopene, lutein/zeaxanthin, beta-cryptoxanthin, vitamins A, E, and C, and folate were not related to the risk of bladder cancer. These findings suggest that fruit and vegetable intakes are not likely to be associated with bladder cancer risk. However, these results may not be generalisable to non-smokers

    Dietary intake of micronutrients and the risk of developing bladder cancer: results from the Belgian case–control study on bladder cancer risk

    Get PDF
    OBJECTIVE: We aimed to investigate the effect of dietary intake of micronutrients that are metabolized and excreted via the urinary tract on bladder cancer risk. METHODS: A semi-quantitative 322 item food frequency questionnaire (FFQ) was used to collect dietary data from 200 bladder cancer cases and 386 control subjects participating in the Belgian case-control study on bladder cancer risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression adjusting for age, sex, smoking characteristics, occupational exposures, and energy intake. RESULTS: We observed a positive association between calcium intake and bladder cancer (OR: 1.77; 95% CI: 1.00-3.15; p-trend = 0.049) and increased odds, although not statistically significant, for highest tertile of phosphorus intake (OR: 1.82; 95% CI: 0.95-3.49; p-trend = 0.06). We identified possible modification of the effects of both calcium and phosphorus by level of magnesium intake. Increased odds of bladder cancer were also observed for participants with highest intake of phosphorus and lowest intake of vitamin D (OR: 4.25; 95% CI: 1.44-12.55) and among older participants with the highest intakes of calcium (OR: 1.90; 95% CI: 1.08-3.36) and phosphorus (OR: 2.02; 95% CI: 1.05-3.92). CONCLUSION: The positive associations we observed between bladder cancer and intake of calcium and phosphorus require confirmation by other studies. The balances between inter-related micronutrients also warrant further examination
    corecore