23 research outputs found

    Limited duration of vaccine poliovirus and other enterovirus excretion among human immunodeficiency virus infected children in Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunodeficient persons with persistent vaccine-related poliovirus infection may serve as a potential reservoir for reintroduction of polioviruses after wild poliovirus eradication, posing a risk of their further circulation in inadequately immunized populations.</p> <p>Methods</p> <p>To estimate the potential for vaccine-related poliovirus persistence among HIV-infected persons, we studied poliovirus excretion following vaccination among children at an orphanage in Kenya. For 12 months after national immunization days, we collected serial stool specimens from orphanage residents aged <5 years at enrollment and recorded their HIV status and demographic, clinical, immunological, and immunization data. To detect and characterize isolated polioviruses and non-polio enteroviruses (NPEV), we used viral culture, typing and intratypic differentiation of isolates by PCR, ELISA, and nucleic acid sequencing. Long-term persistence was defined as shedding for ≥ 6 months.</p> <p>Results</p> <p>Twenty-four children (15 HIV-infected, 9 HIV-uninfected) were enrolled, and 255 specimens (170 from HIV-infected, 85 from HIV-uninfected) were collected. All HIV-infected children had mildly or moderately symptomatic HIV-disease and moderate-to-severe immunosuppression. Fifteen participants shed vaccine-related polioviruses, and 22 shed NPEV at some point during the study period. Of 46 poliovirus-positive specimens, 31 were from HIV-infected, and 15 from HIV-uninfected children. No participant shed polioviruses for ≥ 6 months. Genomic sequencing of poliovirus isolates did not reveal any genetic evidence of long-term shedding. There was no long-term shedding of NPEV.</p> <p>Conclusion</p> <p>The results indicate that mildly to moderately symptomatic HIV-infected children retain the ability to clear enteroviruses, including vaccine-related poliovirus. Larger studies are needed to confirm and generalize these findings.</p

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Structure of the Mediator head module

    No full text
    Gene transcription by RNA polymerase (Pol) II requires the coactivator complex Mediator. Mediator connects transcriptional regulators and Pol II, and is linked to human disease. Mediator from the yeast Saccharomyces cerevisiae has a molecular mass of 1.4megadaltons and comprises 25subunits that form the head, middle, tail and kinase modules. The head module constitutes one-half of the essential Mediator core, and comprises the conserved subunits Med6, Med8, Med11, Med17, Med18, Med20 and Med22. Recent X-ray analysis of the S. cerevisiae head module at 4.3Å resolution led to a partial architectural model with three submodules called neck, fixed jaw and moveable jaw. Here we determine de novo the crystal structure of the head module from the fission yeast Schizosaccharomyces pombe at 3.4Å resolution. Structure solution was enabled by new structures of Med6 and the fixed jaw, and previous structures of the moveable jaw and part of the neck, and required deletion of Med20. The S. pombe head module resembles the head of a crocodile with eight distinct elements, of which at least four are mobile. The fixed jaw comprises tooth and nose domains, whereas the neck submodule contains a helical spine and one limb, with shoulder, arm and finger elements. The arm and the essential shoulder contact other parts of Mediator. The jaws and a central joint are implicated in interactions with PolII and its carboxy-terminal domain, and the joint is required for transcription in vitro. The S. pombe head module structure leads to a revised model of the S. cerevisiae module, reveals a high conservation and flexibility, explains known mutations, and provides the basis for unravelling a central mechanism of gene regulation
    corecore