136 research outputs found
A Large Area Fiber Optic Gyroscope on multiplexed fiber network
We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about (10-8 rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical fiber sensors
Beyond the fundamental noise limit in coherent optical fiber links
It is well known that temperature variations and acoustic noise affect
ultrastable frequency dissemination along optical fiber. Active stabilization
techniques are in general adopted to compensate for the fiber-induced phase
noise. However, despite this compensation, the ultimate link performances
remain limited by the so called delay-unsuppressed fiber noise that is related
to the propagation delay of the light in the fiber. In this paper, we
demonstrate a data post-processing approach which enables us to overcome this
limit. We implement a subtraction algorithm between the optical signal
delivered at the remote link end and the round-trip signal. In this way, a 6 dB
improvement beyond the fundamental limit imposed by delay-unsuppressed noise is
obtained. This result enhances the resolution of possible comparisons between
remote optical clocks by a factor of 2. We confirm the theoretical prediction
with experimental data obtained on a 47 km metropolitan fiber link, and propose
how to extend this method for frequency dissemination purposes as well
Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network
We performed a two-way remote optical phase comparison on optical fiber. Two
optical frequency signals were launched in opposite directions in an optical
fiber and their phases were simultaneously measured at the other end. In this
technique, the fiber noise was passively cancelled, and we compared two optical
frequencies at the ultimate 1E-21 stability level. The experiment was performed
on a 47 km fiber that is part of the metropolitan network for Internet traffic.
The technique relies on the synchronous measurement of the optical phases at
the two ends of the link, that is made possible by the use of digital
electronics. This scheme offers several advantages with respect to active noise
cancellation, and can be upgraded to perform more complex tasks
Absolute frequency measurement of the 1S0 - 3P0 transition of 171Yb
We report the absolute frequency measurement of the unperturbed transition
1S0 - 3P0 at 578 nm in 171Yb realized in an optical lattice frequency standard.
The absolute frequency is measured 518 295 836 590 863.55(28) Hz relative to a
cryogenic caesium fountain with a fractional uncertainty of 5.4x10-16 . This
value is in agreement with the ytterbium frequency recommended as a secondary
representation of the second in the International System of Units.Comment: This is an author-created, un-copyedited version of an article
accepted for publication/published in Metrologia. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The Version of Record is available online at
http://dx.doi.org/10.1088/1681-7575/aa4e62. It is published under a CC BY
licenc
Planar-Waveguide External Cavity Laser Stabilization for an Optical Link with 1E-19 Frequency Stability
We stabilized the frequency of a compact planar-waveguide external cavity
laser (ECL) on a Fabry-P\'erot cavity (FPC) through a Pound-Drever-Hall scheme.
The residual frequency stability of the ECL is 1E-14, comparable to the
stability achievable with a fiber laser (FL) locked to a FPC through the same
scheme. We set up an optical link of 100 km, based on fiber spools, that
reaches 1E-19 relative stability, and we show that its performances using the
ECL or FL are comparable. Thus ECLs could serve as an excellent replacement for
FLs in optical links where cost-effectiveness and robustness are important
considerations
- ā¦