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Planar-Waveguide External Cavity Laser

Stabilization for an Optical Link with 10−19

Frequency Stability
C. Clivati, A. Mura, D. Calonico, F. Levi, G. A. Costanzo, C. E. Calosso and A. Godone

Abstract

We stabilized the frequency of a compact planar-waveguide external cavity laser (ECL) on a Fabry-Pérot cavity

(FPC) through a Pound-Drever-Hall scheme. The residual frequency stability of the ECL is 10−14, comparable to

the stability achievable with a fiber laser (FL) locked to a FPC through the same scheme. We set up an optical link

of 100 km, based on fiber spools, that reaches 10−19 relative stability, and we show that its performances using

the ECL or FL are comparable. Thus ECLs could serve as an excellent replacement for FLs in optical links where

cost-effectiveness and robustness are important considerations.

I. INTRODUCTION

Ultra stable lasers with narrow linewidth are an enabling technology for a variety of scientific applications. They

allow to excite ultra narrow atomic transitions in high-resolution spectroscopy and in optical atomic clocks [1], [2].

They are also required in physics experiments such as tests of fundamental constants variations (for a review, see

[3]) or search of deviations from the Standard Model [4]. In addition, highly coherent lasers are used to realize

frequency transfer systems based on optical fibers [5], [6]. This is a fundamental topic in primary metrology,

since it allows frequency dissemination and remote clocks comparisons with the highest resolution available at

present. Traditional satellite techniques like GPS carrier-phase [7], Two-Way Satellite Time and Frequency Transfer

(TWSTFT) via geostationary satellites [8] and GPS Precise Point Positioning (PPP) [9], have a relative stability of

10−14/day [10]. Therefore, they are no longer able to withstand the performances of the new generation of optical

frequency standards. On the other hand, the frequency transfer on compensated optical fibers can reach a stability

of 10−15τ−1 over hauls of several hundreds kilometres [11], [12], [13]. These results point out a nearly 105 fold

improvement in relative stability at 1000 s with respect to satellite techniques.
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The development of optical frequency links led to a number of new technological issues related to the realization

of ultra stable laser sources, that require balancing high performances with compactness, robustness and low cost.

The stabilization of the laser source to the sub-hertz level is typically accomplished by locking a fiber laser (FL)

to a high finesse Fabry-Perot cavity (FPC) using the Pound-Drever-Hall technique [14]. Examples of locking to

long fiber spools are reported as well [15] even if this technique is at a preliminary stage. However, not only the

cavity must be stabilized and insulated from thermal and mechanical noise, but the linewidth of the free-running

laser needs to be substantially narrower than achievable control bandwidths of ∼ 1 MHz. The stabilization on a

FPC allows linewidth reduction from a few kilohertz to the sub-hertz level. The residual stability is eventually

limited by the thermal fluctuations of the cavity [16] and achieves some parts in 10−15 in terms of relative Allan

deviation [17].

Distributed-Bragg-Reflector (DBR) FLs are preferred, especially in fiber coupled systems, thanks to their broad

wavelength tunability and to the relatively low frequency noise level. However, planar-waveguide external cavity

lasers (ECLs) are becoming a promising option as well. Their performances are similar to the ones of FLs; in

addition, they are cheaper and more agile than FLs. These qualities make them attractive for the realization of

robust optical links and transportable optical clocks.

In this paper we demonstrate the stabilization of a compact ECL on a FPC through a Pound-Drever-Hall scheme

and compare its performances to that of a FL.

We built two identical stabilization setups to compare the beat note between two FLs and between a FL and the

ECL.

Then, we used the FPC-stabilized ECL to set up an optical link over a 100 km fiber spool inside our laboratory, to

show a possible application. We demonstrated performances of the laser beyond the level first reported by Numata

et al. in [18], who stabilized an ECL on acetylene (13C2H2) at 10−13 level of Allan deviation. This paper shows

that the ECL under test is an effective alternative to FLs for the realization of compact ultra stable laser sources

for high accuracy metrology and for the realization of coherent optical links.

II. ULTRA-STABLE LASER SOURCE REALIZATION

A. Experimental setup

We tested a laser module called ORION, built by Redfern Integrated Optics (RIO). It includes a butterfly-packaged

planar-waveguide fiber-coupled ECL (PLANEXTM). The size of the module is about 10 cm × 6 cm × 1 cm, that is

about 0.06 l. On the other hand, the typical size of a FL is around 10 cm × 45 cm × 38 cm, that is 17 l. ORION is

operating at 1542 nm and can be frequency tuned either through the injection current or through the temperature.

The temperature setpoint is changed via a RS232 serial communication port. As reported in Fig. 1, the laser exhibits

hysteresis in power and wavelength vs laser temperature. However, during stable operation, the temperature tuning

is not used and we never observe mode hops or abrupt changes in the emitted power.
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Fig. 1. The hysteresis curves of power (filled squares, left y axis) and wavelength (empty circles, right y axis) vs temperature.
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Fig. 2. Modulation depth of the ORION module with 1 V modulation voltage vs the modulation frequency.

The module can provide a power up to 8 mW. The Current modulation is easily obtained applying a voltage to

the module, in the range ±2.8 V. The modulation performance is evaluated by the beat note between ORION and

a FL locked to a FPC. For three different amplitudes (20 mV ,180 mV, 1 V) we measured the same modulation

amplitude of ∼ 90 MHz/V and a −3 dB bandwidth of 3 kHz. Fig. 2 shows the modulation amplitude with 1 V

modulation voltage.

This rather low bandwidth is not a practical limitation in the stabilization scheme, because an Acousto-Optic

Modulator (AOM) is used to provide a high-bandwidth feedback, whereas the drift of the laser is sufficiently small

that the range of the current port is adequate to keep it locked.

Once the proper operating temperature is set, the ORION module stays locked to the FPC for extended periods of

time without further adjustment.

May 3, 2012 DRAFT



4

Fig. 3. The Pound-Drever-Hall stabilization system. Thin solid lines indicate fibered paths, thin dashed lines indicate free-air paths; thick lines

indicate electronic paths. VCO is the Voltage Controlled Oscillator; λ/2 and λ/4 are half and quarter-wave plates.

Fig. 3 shows the frequency stabilization scheme: we realized two independent systems, to characterize the perfor-

mances by means of the beat note between indipendently stabilized lasers.

A 40 MHz AOM is used to compensate the laser noise and we use a resonant Electro-Optic Modulator (EOM)

at 7 MHz for Pound-Drever-Hall locking. The control loop is a Proportional-Integral-Derivative circuit with nearly

100 kHz bandwidth; the bandwidth of the plant is limited by the delay time of our AOM, that is ∼ 1 µs. Low

frequency noise up to a bandwidth of 1 kHz and drift are corrected by the current modulation in the ORION module

and by a piezoelectric actuator in the FL.

The reference for the laser stabilization of each circuit is an independent Corning ULE R⃝cavity with finesse of

120 000, and Free Spectral Range of 1.5 GHz. The cavities are notched in order to reduce the sensitivity of the

optical axis length to seismic noise [19]; we measured a sensitivity of the optical axis length to gravitational force

of 4.5 pm/( m/s2), corresponding to 9 kHz/( m/s2).

Each cavity is housed in a copper thermal shield inside a vacuum chamber at 6× 10−6 Pa and the whole vacuum

system is wrapped in multiple layers of foam rubber to insulate from environmental thermal fluctuations. A digital

control loop compensates the temperature variations on the copper shield with a bandwidth of some millihertz,

driving two heaters on the outside of the vacuum vessel. We achieve a thermal stability of 1 µK at 1 s, whereas

on the long term we observe a peak to peak variation of 1 mK.

The laser power impinging the FPC is less than 20 µW, and kept as low as possible to reduce etalon effects and

amplitude-to-frequency noise conversions inside the cavity. We measured relative power fluctuations of 5 × 10−4

at 1 s and a power to frequency conversion coefficient of about 20 Hz/µW, resulting in a negligible contribution

to the laser stability. No significant differences were measured in the amplitude noise power spectrum between the

FL and the ORION.

B. Experimental results

To characterize the noise of the free running lasers we locked them to the FPC, using only the fast feedback

provided by the AOM; we then acquired the correction signal sent to the Voltage Controlled Oscillator (VCO) with

a Fast Fourier Transform (FFT) Spectrum Analyser. This voltage is proportional to the free running frequency noise
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Fig. 4. Frequency noise of free running ORION (upper dotted line) and FL (upper solid line) and closed loop frequency noise of the beat note

between ORION and FL (lower dotted line) and two FLs (lower solid line).

of the laser, up to the control bandwidth, since it is expected to be greater than the noise of the reference cavity.

The results are plotted in Fig. 4.

A comparison of the frequency noise spectrum of the FL and the ORION shows a higher frequency noise slope

of the FL below 10 Hz, maybe caused by mechanical and acoustic noise in the fiber, while the FL noise is lower

above 30 Hz. Also, the FL shows to be more sensitive to acoustic resonances between 20 Hz and 100 Hz.

Following the approach of Di Domenico et al. [20] the open loop frequency noise spectrum has been integrated

from 10 Hz to 2 kHz (3 kHz for the ORION noise) to evaluate the free running laser fast linewidth. We choosed

10 Hz as lower integration limit to prevent the divergence of the laser linewidth at lower frequencies. The upper

integration limit was chosen because higher frequencies only contribute to the wings of the line shape and not to

the laser linewidth. We used this approach since it allows to exclude the contribution of environmental acoustic

peaks from the evaluation of the laser linewidth. We deduced a laser linewidth of 5 kHz for our free-running FL

and a linewidth of 17 kHz for the ORION module.

To characterize the noise of the locked laser, we downconverted the beat note (∼ 300 MHz) between two FLs and

a FL and the ORION, and processed it with a digital phasemeter. Since the stabilization scheme is the same and

the free running noise of the two lasers is similar, we expected a similar performance of the stabilized ORION and

the FL. Fig. 4 reports the residual frequency noise spectra of the beat note between two FLs and between ORION

and a FL. As expected, the free running noise of the ORION module is not a practical limitation to the frequency

stabilization, since its contribution can be kept negligible with respect to the residual noise of the cavities.

The beat note is strongly modulated by the peaks clearly visible on the frequency noise spectrum between 10 Hz

and 100 Hz: they arise from acoustic and seismic vibrations of the cavities and of the lasers and may be reduced

in the future through a better insulation.

In Fig. 5 we show the relative Allan deviation of the beat note between two FLs and between ORION and a FL.
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Fig. 5. Allan deviation of the beat note between ORION and FL (filled squares) and two FLs (empty circles).

Fig. 6. Scheme of the optical link. PD1 and PD2 indicate the photodiodes. Thin lines indicate fibered paths, thick lines indicate electronic

paths.

In both situations we reach an Allan deviation of 2× 10−14 at 1 s; as mentioned before, we attribute such residual

instability to the cavity itself and not to the laser source. The relatively large drift (about 2.5 Hz/s) is consistent

with the residual temperature drift of the cavities.

III. THE OPTICAL LINK

A. Experimental setup

We used the stabilized ORION to set up an optical link over a 100 km fiber spool inside our laboratory. The

scheme is shown in Fig. 6. The stabilized laser is sent through 100 km of fiber spool to the remote end of the

link and there it is reflected back to the local end to actively compensate the phase noise generated by the link.

To this purpose two AOMs are placed on the fiber path. The first one (AOM1) is used to actively compensate the
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Fig. 7. Phase noise of the optical link at the remote end, using the ORION as a light source. Solid line: free running link. Solid line, filled

circles: compensated link. Dotted line, empty circles: expected delay-limited residual noise. Dotted line: system noise floor.

noise of the link, the second (AOM2) is used at the remote end to frequency shift the retro-reflected light, in order

to distinguish spurious reflections from the round-trip signal. The retro-reflected light is compared to the input on

photodiode PD1, to extract the phase noise of the link and to generate the correction signal. At the remote end, the

transmitted radiation is compared to the input laser on photodiode PD2 to measure the link performance.

The system is enclosed in an insulation box to reduce temperature fluctuations and acoustic noise on the fibers.

B. Experimental results

We measured stability and the phase noise spectrum of the beat note between injected and transmitted radiation;

phase noise spectra are acquired through a digital phasemeter, whereas link stability over longer periods is measured

by counting the downconverted beat note with a high-resolution frequency counter. Since this is a Λ-type frequency

counter, it leads to a quantity similar to the modified Allan deviation; a detailed discussion and scaling factor can

be found in [21], [22].

Fig. 7 reports the phase noise spectra at open and closed loop (using the ORION as laser source). The fiber noise

cannot be completely removed at the remote end even for infinite loop gain, because we are locking the link at

the local end. The closed loop phase noise at the remote end (solid line, filled circles) approaches to the expected

delay-limited noise (dotted line, empty circles) at frequencies between 0.1 Hz and 20 Hz: as evaluated in [12],

assuming that the noise is uncorrelated over the link, the minimum residual phase noise is 1
3 (2πfτF)

2Φ2
F(f) where

Φ2
F(f) represents the phase noise of the fiber and τF is the fiber delay.

At frequencies higher than 20 Hz, the phase noise of the compensated link is limited by the Phase Locking Loop

(PLL) bandwidth; at frequencies lower than 0.1 Hz the compensation is limited by the noise floor (dotted line) of

our system.
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Fig. 8. Comparison of free running and compensated link performances using ORION or the FL. Dotted line, filled squares: free running link

with ORION; dotted line, empty squares: free running link with FL. Solid line, filled circles: compensated link with ORION; solid line, empty

circles: compensated link with FL.
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Fig. 9. Relative stability of the free running (dashed line, empty squares) and compensated link using the ORION (solid line, filled squares)

as a light source, aquired with a Λ-type frequency counter.

In Fig. 8, we compare the phase noise of the free running and compensated link using ORION (respectively dotted

line with filled squares and solid line with filled circles) and FL (respectively dotted line with empty squares and

solid line with empty circles); as mentioned before, the link noise is limited by the delay and by the PLL gain

inside the loop bandwidth. As expected, the compensated link shows quite similar performances with ORION and

the FL; the small differences at frequencies around 30 Hz can be due to non stationary acoustic and seismic noise

in the laboratory.

Fig. 9 reports the relative stability of the optical link using ORION as a laser source; it exhibits a τ−3/2 dependence

at short integration times, as expected when acquiring white phase noise with a Λ-type frequency counter. The bump

May 3, 2012 DRAFT



9

around 250 s corresponds to half cycle of the air conditioning, whereas the ultimate stability reaches the 10−19

level, limited by the temperature fluctuations on the uncompensated fibers. The unmatched fiber paths would need

to be further reduced in order to limit the thermal expansion and polarization changes.

IV. CONCLUSION

We demonstrated that the ORION module by RIO is suitable to realize an ultra stable laser source by locking

it to a high-finesse FPC through the Pound-Drever-Hall technique. High frequency noise is suppressed through a

fiber AOM; the laser current is used to increase the loop gain at low frequencies. This laser achieves a relative

stability of 10−14 at 1 s. The stabilized laser is used to realize an optical link over a length L = 100 km on a

fiber spool with an ultimate relative stability of 10−19. The experimental results point out that the ORION module

is appropriate for the intended use. Since the expected delay-limited residual phase noise scales as L3 while the

influence of the laser noise scales as L2 [12], we expect that even for longer links the latter will not constitute a

limitation.

The compactness and robustness of the ORION module make it an effective alternative to FLs for the realization

of ultra stable laser sources and for optical links.
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