12,016 research outputs found
Quantum cosmological Friedman models with a Yang-Mills field and positive energy levels
We prove the existence of a spectral resolution of the Wheeler-DeWitt
equation when the matter field is provided by a Yang-Mills field, with or
without mass term, if the spatial geometry of the underlying spacetime is
homothetic to . The energy levels of the resulting quantum model, i.e.,
the eigenvalues of the corresponding self-adjoint Hamiltonian with a pure point
spectrum, are strictly positive.Comment: 9 pages, v3: minor corrections to bring it in line with the published
versio
Edge vulnerability in neural and metabolic networks
Biological networks, such as cellular metabolic pathways or networks of
corticocortical connections in the brain, are intricately organized, yet
remarkably robust toward structural damage. Whereas many studies have
investigated specific aspects of robustness, such as molecular mechanisms of
repair, this article focuses more generally on how local structural features in
networks may give rise to their global stability. In many networks the failure
of single connections may be more likely than the extinction of entire nodes,
yet no analysis of edge importance (edge vulnerability) has been provided so
far for biological networks. We tested several measures for identifying
vulnerable edges and compared their prediction performance in biological and
artificial networks. Among the tested measures, edge frequency in all shortest
paths of a network yielded a particularly high correlation with vulnerability,
and identified inter-cluster connections in biological but not in random and
scale-free benchmark networks. We discuss different local and global network
patterns and the edge vulnerability resulting from them.Comment: 8 pages, 4 figures, to appear in Biological Cybernetic
Can effects of quantum gravity be observed in the cosmic microwave background?
We investigate the question whether small quantum-gravitational effects can
be observed in the anisotropy spectrum of the cosmic microwave background
radiation. An observation of such an effect is needed in order to discriminate
between different approaches to quantum gravity. Using canonical quantum
gravity with the Wheeler-DeWitt equation, we find a suppression of power at
large scales. Current observations only lead to an upper bound on the energy
scale of inflation, but the framework is general enough to study other
situations in which such effects might indeed be seen.Comment: 5 pages, 1 figure, essay awarded first prize in the Gravity Research
Foundation essay competition 201
RTM user's guide
RTM is a FORTRAN '77 computer code which simulates the infiltration of textile reinforcements and the kinetics of thermosetting polymer resin systems. The computer code is based on the process simulation model developed by the author. The compaction of dry, woven textile composites is simulated to describe the increase in fiber volume fraction with increasing compaction pressure. Infiltration is assumed to follow D'Arcy's law for Newtonian viscous fluids. The chemical changes which occur in the resin during processing are simulated with a thermo-kinetics model. The computer code is discussed on the basis of the required input data, output files and some comments on how to interpret the results. An example problem is solved and a complete listing is included
Acoustooptic pulse-echo transducer system
A pulse-echo transducer system which uses an ultrasonic generating element and an optical detection technique is described. The transmitting transducer consists of a concentric ring electrode pattern deposited on a circular, X-cut quartz substrate with a circular hole in the center. The rings are independently pulsed with a sequence high voltage signals phased in such a way that the ultrasonic waves generated by the separate rings superimpose to produce a composite field which is focused at a controllable distance below the surface of the specimen. The amplitude of the field reflected from this focus position is determined by the local reflection coefficient of the medium at the effective focal point. By processing the signals received for a range of ultrasonic transducer array focal lengths, the system can be used to locate and size anomalies within solids and liquids. Applications in both nondestructive evaluation and biomedical scanning are suggested
Perspective: network-guided pattern formation of neural dynamics
The understanding of neural activity patterns is fundamentally linked to an
understanding of how the brain's network architecture shapes dynamical
processes. Established approaches rely mostly on deviations of a given network
from certain classes of random graphs. Hypotheses about the supposed role of
prominent topological features (for instance, the roles of modularity, network
motifs, or hierarchical network organization) are derived from these
deviations. An alternative strategy could be to study deviations of network
architectures from regular graphs (rings, lattices) and consider the
implications of such deviations for self-organized dynamic patterns on the
network. Following this strategy, we draw on the theory of spatiotemporal
pattern formation and propose a novel perspective for analyzing dynamics on
networks, by evaluating how the self-organized dynamics are confined by network
architecture to a small set of permissible collective states. In particular, we
discuss the role of prominent topological features of brain connectivity, such
as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the
notion of network-guided pattern formation with numerical simulations and
outline how it can facilitate the understanding of neural dynamics
Predicting the connectivity of primate cortical networks from topological and spatial node properties
The organization of the connectivity between mammalian cortical areas has
become a major subject of study, because of its important role in scaffolding
the macroscopic aspects of animal behavior and intelligence. In this study we
present a computational reconstruction approach to the problem of network
organization, by considering the topological and spatial features of each area
in the primate cerebral cortex as subsidy for the reconstruction of the global
cortical network connectivity. Starting with all areas being disconnected,
pairs of areas with similar sets of features are linked together, in an attempt
to recover the original network structure. Inferring primate cortical
connectivity from the properties of the nodes, remarkably good reconstructions
of the global network organization could be obtained, with the topological
features allowing slightly superior accuracy to the spatial ones. Analogous
reconstruction attempts for the C. elegans neuronal network resulted in
substantially poorer recovery, indicating that cortical area interconnections
are relatively stronger related to the considered topological and spatial
properties than neuronal projections in the nematode. The close relationship
between area-based features and global connectivity may hint on developmental
rules and constraints for cortical networks. Particularly, differences between
the predictions from topological and spatial properties, together with the
poorer recovery resulting from spatial properties, indicate that the
organization of cortical networks is not entirely determined by spatial
constraints
- …