Biological networks, such as cellular metabolic pathways or networks of
corticocortical connections in the brain, are intricately organized, yet
remarkably robust toward structural damage. Whereas many studies have
investigated specific aspects of robustness, such as molecular mechanisms of
repair, this article focuses more generally on how local structural features in
networks may give rise to their global stability. In many networks the failure
of single connections may be more likely than the extinction of entire nodes,
yet no analysis of edge importance (edge vulnerability) has been provided so
far for biological networks. We tested several measures for identifying
vulnerable edges and compared their prediction performance in biological and
artificial networks. Among the tested measures, edge frequency in all shortest
paths of a network yielded a particularly high correlation with vulnerability,
and identified inter-cluster connections in biological but not in random and
scale-free benchmark networks. We discuss different local and global network
patterns and the edge vulnerability resulting from them.Comment: 8 pages, 4 figures, to appear in Biological Cybernetic