341 research outputs found

    On Differential Privacy and Traffic State Estimation Problem for Connected Vehicles

    Full text link
    This letter focuses on the problem of traffic state estimation for highway networks with junctions in the form of on- and off-ramps while maintaining differential privacy of traffic data. Two types of sensors are considered, fixed sensors such as inductive loop detectors and connected vehicles which provide traffic density and speed data. The celebrated nonlinear second-order Aw-Rascle- Zhang (ARZ) model is utilized to model the traffic dynamics. The model is formulated as a nonlinear state-space difference equation. Sensitivity relations are derived for the given data which are then used to formulate a differentially private mechanism which adds a Gaussian noise to the data to make it differentially private. A Moving Horizon Estimation (MHE) approach is implemented for traffic state estimation using a linearized ARZ model. MHE is compared with Kalman Filter variants namely Extended Kalman Filter, Ensemble Kalman Filter and Unscented Kalman Filter. Several research and engineering questions are formulated and analysis is performed to find corresponding answers.Comment: TO APPEAR IN THE 61ST IEEE CONFERENCE ON DECISION AND CONTROL (CDC), CANCUN, MEXICO, DECEMBER 2022. arXiv admin note: text overlap with arXiv:2209.0284

    Gravitational lensing in spherically symmetric static spacetimes with centrifugal force reversal

    Get PDF
    In Schwarzschild spacetime the value r=3mr=3m of the radius coordinate is characterized by three different properties: (a) there is a ``light sphere'', (b) there is ``centrifugal force reversal'', (c) it is the upper limiting radius for a non-transparent Schwarschild source to act as a gravitational lens that produces infinitely many images. In this paper we prove a theorem to the effect that these three properties are intimately related in {\em any} spherically symmetric static spacetime. We illustrate the general results with some examples including black-hole spacetimes and Morris-Thorne wormholes.Comment: 18 pages, 3 eps-figure

    Where Should Traffic Sensors Be Placed on Highways?

    Full text link
    This paper investigates the practical engineering problem of traffic sensors placement on stretched highways with ramps. Since it is virtually impossible to install bulky traffic sensors on each highway segment, it is crucial to find placements that result in optimized network-wide, traffic observability. Consequently, this results in accurate traffic density estimates on segments where sensors are not installed. The substantial contribution of this paper is the utilization of control-theoretic observability analysis -- jointly with integer programming -- to determine traffic sensor locations based on the nonlinear dynamics and parameters of traffic networks. In particular, the celebrated asymmetric cell transmission model is used to guide the placement strategy jointly with observability analysis of nonlinear dynamic systems through Gramians. Thorough numerical case studies are presented to corroborate the proposed theoretical methods and various computational research questions are posed and addressed. The presented approach can also be extended to other models of traffic dynamics

    Gravitational lensing in the strong field limit

    Get PDF
    We provide an analytic method to discriminate among different types of black holes on the ground of their strong field gravitational lensing properties. We expand the deflection angle of the photon in the neighbourhood of complete capture, defining a strong field limit, in opposition to the standard weak field limit. This expansion is worked out for a completely generic spherically symmetric spacetime, without any reference to the field equations and just assuming that the light ray follows the geodesics equation. We prove that the deflection angle always diverges logarithmically when the minimum impact parameter is reached. We apply this general formalism to Schwarzschild, Reissner-Nordstrom and Janis-Newman-Winicour black holes. We then compare the coefficients characterizing these metrics and find that different collapsed objects are characterized by different strong field limits. The strong field limit coefficients are directly connected to the observables, such as the position and the magnification of the relativistic images. As a concrete example, we consider the black hole at the centre of our galaxy and estimate the optical resolution needed to investigate its strong field behaviour through its relativistic images.Comment: 10 pages, 5 figures, in press on Physical Review

    Genome-wide interrogation of hepatic FXR reveals an asymmetric IR-1 motif and synergy with LRH-1

    Get PDF
    We used mouse hepatic chromatin enriched with an FXR antibody and chromatin immunoprecipitation-sequencing (ChIP-seq) to evaluate FXR binding on a genome-wide scale. This identified 1656 FXR-binding sites and 10% were located within 2 kb of a transcription start site which is much higher than predicted by random occurrence. A motif search uncovered a canonical nuclear receptor IR-1 site, consistent with in vitro DNA-binding studies reported previously. A separate nuclear receptor half-site for monomeric receptors such as LRH-1 was co-enriched and FXR activation of four newly identified promoters was significantly augmented by an LRH-1 expression vector in a co-transfection assay. There were 1038 genes located within 20 kb of a peak and a gene set enrichment analysis showed that genes identified by our ChIP-seq analysis are highly correlated with genes activated by an FXR-VP16 adenovirus in primary mouse hepatocytes providing functional relevance to the genome-wide binding study. Gene Ontology analysis showed FXR-binding sites close to many genes in lipid, fatty acid and steroid metabolism. Other broad gene clusters related to metabolism, transport, signaling and glycolysis were also significantly enriched. Thus, FXR may have a much wider role in cellular metabolism than previously appreciated

    On the exact gravitational lens equation in spherically symmetric and static spacetimes

    Full text link
    Lensing in a spherically symmetric and static spacetime is considered, based on the lightlike geodesic equation without approximations. After fixing two radius values r_O and r_S, lensing for an observation event somewhere at r_O and static light sources distributed at r_S is coded in a lens equation that is explicitly given in terms of integrals over the metric coefficients. The lens equation relates two angle variables and can be easily plotted if the metric coefficients have been specified; this allows to visualize in a convenient way all relevant lensing properties, giving image positions, apparent brightnesses, image distortions, etc. Two examples are treated: Lensing by a Barriola-Vilenkin monopole and lensing by an Ellis wormhole.Comment: REVTEX, 11 pages, 12 eps-figures, figures partly improved, minor revision
    • ā€¦
    corecore