2,894 research outputs found

    Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?

    Get PDF
    Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi-quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa-specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low-level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance (RRA) information often provides a more accurate view of population-level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research

    Heterogeneity of Myc expression in breast cancer exposes pharmacological vulnerabilities revealed through executable mechanistic modeling

    Get PDF
    Cells with higher levels of Myc proliferate more rapidly and supercompetitively eliminate neighboring cells. Nonetheless, tumor cells in aggressive breast cancers typically exhibit significant and stable heterogeneity in their Myc levels, which correlates with refractoriness to therapy and poor prognosis. This suggests that Myc heterogeneity confers some selective advantage on breast tumor growth and progression. To investigate this, we created a traceable MMTV-Wnt1-driven in vivo chimeric mammary tumor model comprising an admixture of low-Myc- and reversibly switchable high-Myc-expressing clones. We show that such tumors exhibit interclonal mutualism wherein cells with high-Myc expression facilitate tumor growth by promoting protumorigenic stroma yet concomitantly suppress Wnt expression, which renders them dependent for survival on paracrine Wnt provided by low-Myc-expressing clones. To identify any therapeutic vulnerabilities arising from such interdependency, we modeled Myc/Ras/p53/Wnt signaling cross talk as an executable network for low-Myc, for high-Myc clones, and for the 2 together. This executable mechanistic model replicated the observed interdependence of high-Myc and low-Myc clones and predicted a pharmacological vulnerability to coinhibition of COX2 and MEK. This was confirmed experimentally. Our study illustrates the power of executable models in elucidating mechanisms driving tumor heterogeneity and offers an innovative strategy for identifying combination therapies tailored to the oligoclonal landscape of heterogenous tumors

    Security governance and networks: New theoretical perspectives in transatlantic security

    Get PDF
    The end of the Cold War has not only witnessed the rise of new transnational threats such as terrorism, crime, proliferation and civil war; it has also seen the growing role of non-state actors in the provision of security in Europe and North America. Two concepts in particular have been used to describe these transformations: security governance and networks. However, the differences and potential theoretical utility of these two concepts for the study of contemporary security have so far been under-examined. This article seeks to address this gap. It proposes that security governance can help to explain the transformation of Cold War security structures, whereas network analysis is particularly useful for understanding the relations and interactions between public and private actors in the making and implementation of national and international security policies

    Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention

    Get PDF
    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint

    Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study.

    Get PDF
    BACKGROUND: The causes of metabolic syndrome (MS), which may be a precursor of coronary disease, are uncertain. We hypothesize that disturbances in neuroendocrine and cardiac autonomic activity (CAA) contribute to development of MS. We examine reversibility and the power of psychosocial and behavioral factors to explain the neuroendocrine adaptations that accompany MS. METHODS AND RESULTS: This was a double-blind case-control study of working men aged 45 to 63 years drawn from the Whitehall II cohort. MS cases (n=30) were compared with healthy controls (n=153). Cortisol secretion, sensitivity, and 24-hour cortisol metabolite and catecholamine output were measured over 2 days. CAA was obtained from power spectral analysis of heart rate variability (HRV) recordings. Twenty-four-hour cortisol metabolite and normetanephrine (3-methoxynorepinephrine) outputs were higher among cases than controls (+ 0.49, +0.45 SD, respectively). HRV and total power were lower among cases (both -0.72 SD). Serum interleukin-6, plasma C-reactive protein, and viscosity were higher among cases (+0.89, +0.51, and +0.72 SD). Lower HRV was associated with higher normetanephrine output (r=-0.19; P=0.03). Among former cases (MS 5 years previously, n=23), cortisol output, heart rate, and interleukin-6 were at the level of controls. Psychosocial factors accounted for 37% of the link between MS and normetanephrine output, and 7% to 19% for CAA. Health-related behaviors accounted for 5% to 18% of neuroendocrine differences. CONCLUSIONS: Neuroendocrine stress axes are activated in MS. There is relative cardiac sympathetic predominance. The neuroendocrine changes may be reversible. This case-control study provides the first evidence that chronic stress may be a cause of MS. Confirmatory prospective studies are required

    Glucagon-like peptide-1 derived cardioprotection does not utilize a KATP-channel dependent pathway: mechanistic insights from human supply and demand ischemia studies.

    Get PDF
    BACKGROUND: Glucagon-like peptide-1 (7-36) amide (GLP-1) protects against stunning and cumulative left ventricular dysfunction in humans. The mechanism remains uncertain but GLP-1 may act by opening mitochondrial K-ATP channels in a similar fashion to ischemic conditioning. We investigated whether blockade of K-ATP channels with glibenclamide abrogated the protective effect of GLP-1 in humans. METHODS: Thirty-two non-diabetic patients awaiting stenting of the left anterior descending artery (LAD) were allocated into 4 groups (control, glibenclamide, GLP-1, and GLP-1 + glibenclamide). Glibenclamide was given orally prior to the procedure. A left ventricular conductance catheter recorded pressure-volume loops during a 1-min low-pressure balloon occlusion (BO1) of the LAD. GLP-1 or saline was then infused for 30-min followed by a further 1-min balloon occlusion (BO2). In a non-invasive study, 10 non-diabetic patients were randomized to receive two dobutamine stress echocardiograms (DSE) during GLP-1 infusion with or without oral glibenclamide pretreatment. RESULTS: GLP-1 prevented stunning even with glibenclamide pretreatment; the Δ % dP/dtmax 30-min post-BO1 normalized to baseline after GLP-1: 0.3 ± 6.8 % (p = 0.02) and GLP-1 + glibenclamide: -0.8 ± 9.0 % (p = 0.04) compared to control: -11.5 ± 10.0 %. GLP-1 also reduced cumulative stunning after BO2: -12.8 ± 10.5 % (p = 0.02) as did GLP-1 + glibenclamide: -14.9 ± 9.2 % (p = 0.02) compared to control: -25.7 ± 9.6 %. Glibenclamide alone was no different to control. Glibenclamide pretreatment did not affect global or regional systolic function after GLP-1 at peak DSE stress (EF 74.6 ± 6.4 vs. 74.0 ± 8.0, p = 0.76) or recovery (EF 61.9 ± 5.7 vs. 61.4 ± 5.6, p = 0.74). CONCLUSIONS: Glibenclamide pretreatment does not abrogate the protective effect of GLP-1 in human models of non-lethal myocardial ischemia. Trial registration Clinicaltrials.gov Unique Identifier: NCT02128022

    Growing old, yet staying young: The role of telomeres in bats' exceptional longevity

    Get PDF
    Understanding aging is a grand challenge in biology. Exceptionally long-lived animals have mechanisms that underpin extreme longevity. Telomeres are protective nucleotide repeats on chromosome tips that shorten with cell division, potentially limiting life span. Bats are the longest-lived mammals for their size, but it is unknown whether their telomeres shorten. Using >60 years of cumulative mark-recapture field data, we show that telomeres shorten with age inRhinolophus ferrumequinumandMiniopterus schreibersii, but not in the bat genus with greatest longevity,Myotis. As in humans, telomerase is not expressed inMyotis myotisblood or fibroblasts. Selection tests on telomere maintenance genes show thatATMandSETX, which repair and prevent DNA damage, potentially mediate telomere dynamics inMyotisbats. Twenty-one telomere maintenance genes are differentially expressed inMyotis, of which 14 are enriched for DNA repair, and 5 for alternative telomere-lengthening mechanisms. We demonstrate how telomeres, telomerase, and DNA repair genes have contributed to the evolution of exceptional longevity inMyotisbats, advancing our understanding of healthy aging

    Factors affecting the support for physical activity in children and adolescents with type 1 diabetes mellitus: a national survey of health care professionals' perceptions

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordAvailability of data and materials: The datasets generated and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.BACKGROUND: Many children and adolescents with Type 1 Diabetes Mellitus (T1DM) don't meet the recommended levels of physical activity. Healthcare professionals (HCPs) have a key role in supporting and encouraging children and adolescents with T1DM to be physically active. This study aims to understand the perspectives of HCPs in relation to supporting physical activity and implementing guidelines relating to physical activity. METHODS: An online mixed methods survey was circulated to HCPs in pediatric diabetes units in England and Wales. Participants were asked about how they support physical activity in their clinic and their perceptions of barriers/enablers of providing physical activity support to children and adolescents with T1DM. Quantitative data were analysed descriptively. An deductive thematic approach was applied to the free text responses using the Capability Opportunity Motivation model of Behaviour (COM-B) as a framework. RESULTS: Responses were received from 114 individuals at 77 different pediatric diabetes units (45% of pediatric diabetes units in England and Wales). HCPs surveyed felt that the promotion of physical activity is important (90%) and advised patients to increase levels of physical activity (88%). 19% of the respondents felt they did not have sufficient knowledge to provide support. HCPs reported limited knowledge and confidence, time and resources as barriers to providing support. They also felt the current guidance was too complicated with few practical solutions. CONCLUSION: Pediatric HCPs need training and support to be able to encourage and support children and adolescents with T1D to be a physical activity. In addition, resources that provide simple and practical advice to manage glucose around exercise are needed.National Institute for Health and Care Research (NIHR
    • …
    corecore