374 research outputs found

    Surface complexation of Cu on birnessite (d-MnO2): Controls on Cu in the deep ocean

    Get PDF
    Hexagonal birnessite (d-MnO2) is a close analogue to the dominant phase in hydrogenetic marine ferromanganese crusts and nodules. These deposits contain 0.25 wt.% Cu which is believed to be scavenged from the overlying water column where Cu concentrations are near 0.1 lg/L. Here, we measured the sorption of Cu on d-MnO2 as a function of pH and surface loading. We characterized the nature of the Cu sorption complex at pH 4 and 8 using EXAFS spectroscopy and find that, at pH 4, Cu sorbs to birnessite by inner-sphere complexation on the {0 0 1} surface at sites above Mn vacancies to give a three to four fold coordinated complex with 6 Mn neighbors at 3.4 A ̊ . At pH 8, however, we find that some Cu has become structurally incorporated into the MnO2 layer by occupying the vacancy sites to give 6 Mn neighbors at 2.91 A ̊ . Density functional calculations on CuMn O Ă°OHÞ Ă°H OÞ 4 and CuMn O Ă°OHÞ Ă°H OÞ 1 clusters predict a threefold coordinated surface 18 24 30 2 3 18 21 33 2 3 complex and show that the change from surface complexation to structural incorporation is a response to protonation of oxy- gens surrounding the vacancy site. Consequently, we propose that the transformation between sorption via surface complex and vacancy site occupancy should be reversible. By fitting the Cu sorption as a function of surface loading and pH to the formation of the observed and predicted surface complex, we developed a surface complexation model (in the basic Stern approximation) for the sorption of Cu onto birnessite. Using this model, we demonstrate that the concentration of inorganic Cu in the deep ocean should be several orders of magnitude lower than the observed total dissolved Cu. We propose that the observed total dissolved Cu concentration in the oceans reflects solubilization of Cu by microbially generated ligands

    An in vitro investigation of the inflammatory response to the strain amplitudes which occur during high frequency oscillation ventilation and conventional mechanical ventilation

    Get PDF
    The research was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College Londo

    Experimental evaluation of the extractability of Fe-bound organic carbon in sediments as a function of carboxyl content

    Get PDF
    The majority of organic carbon (OC) burial in marine sediments occurs on continental shelves, of which an estimated 10–20% is associated with reactive iron (FeR). The association of OC with FeR (OC-FeR) is thought to facilitate preservation of organic matter (OM) in sediments and therefore represents an important carbon sink. The citrate-bicarbonate-dithionite (CBD) method is used to quantify OC-FeR in marine sediments by reductively dissolving FeR, thereby releasing bound OC. While the CBD method is widely used, it may be less efficient at measuring OC-FeR than currently thought, due to the incomplete reduction of FeR, resulting from the neutral pH conditions required to prevent OM hydrolysis. Additionally, the typical range of values reported for OC-FeR in marine sediments is narrow, despite variation in OM and FeR inputs, OM source types and chemical compositions. This suggests a limitation exists on the amount of OC that can become associated with FeR, and/or that the CBD method is limited in the OC-FeR that it is able to quantify. In assessing the efficiency of the CBD method, we aimed to understand whether methodological errors or (mis)interpretation of these extraction results may contribute to the apparent limitation on OC-FeR values. Here, we synthesised OC-FeR composites with a known FeR phase and known OM moieties, varying in carboxyl content, at neutral pH. These were spiked into OC-free marine sediment, and subject to a CBD extraction to investigate i) the efficiency of CBD for OC extraction; ii) the efficiency of CBD for FeR extraction; ii) how the OC moiety affects the physical parameters of associated FeR minerals; and iii) the impact of OM moiety on OC and Fe release. We show that the CBD method results in only partial dissolution of the most susceptible FeR phase (ferrihydrite) and therefore incomplete removal of bound OC. While as little as ~20% of Fe is released from OC-free ferrihydrite, structural disorder of the mineral phase increases with the inclusion of more OC, resulting in greater losses of up to 62% Fe for carboxyl rich OC-FeR complexes. In addition, our results show that the NaCl control step performed in the CBD method is capable of removing weakly bound OC from FeR, such that inclusion of this OC in the total OC-FeR fraction may increase marine sediments OC-FeR estimates by ~33%. Finally, we suggest that the structure of OC involved in OC-FeR binding can affect quantification of the OC-FeR pool. Our results have important implications for assessing the FeR bound OC fraction in marine sediments and the fate of this OC in the global carbon cycle

    Technical note: Uncovering the influence of methodological variations on the extractability of iron-bound organic carbon

    Get PDF
    Association of organic carbon (OC) with reactive iron (FeR) represents an important mechanism by which OC is protected against remineralisation in soils and marine sediments. Recent studies indicate that the molecular structure of organic compounds and/or the identity of associated FeR phases exert a control on the ability of an OC–FeR complex to be extracted by the citrate–bicarbonate–dithionite (CBD) method. However, many variations of the CBD extraction are used, and these are often uncalibrated to each other, rendering comparisons of OC–FeR values extracted via the different methods impossible. Here, we created synthetic ferrihydrite samples coprecipitated with simple organic structures and subjected these to modifications of the most common CBD method. We altered some of the method parameters (reagent concentration, time of the extraction and sample preparation methods) and measured FeR recovery to determine which (if any) modifications affected the release of FeR from the synthetic sample. We provide an assessment of the reducing capacity of Na dithionite in the CBD method (the amount of Fe reduced by a fixed amount of dithionite) and find that the concentration of dithionite deployed can limit OC–FeR extractability for sediments with a high FeR content. Additionally, we show that extending the length of any CBD extraction offers no benefit in removing FeR. Moreover, we demonstrate that for synthetic OC–FeR samples dominated by ferrihydrite, freeze-drying samples can significantly reduce OC–FeR extractability; this appears to be less of an issue for natural marine sediments where natural ageing mechanisms may mimic the freeze-drying process for more stable Fe phases. While our study is not an all-inclusive method comparison and is not aimed at delivering the “perfect” extraction setup, our findings provide a collected summary of critical factors which influence the efficiency of the CBD extraction for OC–FeR. As such, we provide a platform from which OC–FeR values obtained under different methods can be interpreted and future studies of sediment carbon cycling can build upon

    Mineralogical control on methylotrophic methanogenesis and implications for cryptic methane cycling in marine surface sediment.

    Get PDF
    Minerals are widely proposed to protect organic carbon from degradation and thus promote the persistence of organic carbon in soils and sediments, yet a direct link between mineral adsorption and retardation of microbial remineralisation is often presumed and a mechanistic understanding of the protective preservation hypothesis is lacking. We find that methylamines, the major substrates for cryptic methane production in marine surface sediment, are strongly adsorbed by marine sediment clays, and that this adsorption significantly reduces their concentrations in the dissolved pool (up to 40.2 ± 0.2%). Moreover, the presence of clay minerals slows methane production and reduces final methane produced (up to 24.9 ± 0.3%) by a typical methylotrophic methanogen-Methanococcoides methylutens TMA-10. Near edge X-ray absorption fine structure spectroscopy shows that reversible adsorption and occlusive protection of methylamines in clay interlayers are responsible for the slow-down and reduction in methane production. Here we show that mineral-OC interactions strongly control methylotrophic methanogenesis and potentially cryptic methane cycling in marine surface sediments

    Combining local knowledge and soil science for integrated soil health assessments in conservation agriculture systems

    Get PDF
    The challenges of soil degradation and climate change have led to the emergence of Conservation Agriculture (CA) as a sustainable alternative to tillage-based agriculture systems. Despite the recognition of positive impacts on soil health, CA adoption in Africa has remained low. Previous soil health studies have mainly focused on ‘scientific’ measurements, without consideration of local knowledge, which influences how farmers interpret CA impacts and future land management decisions. This study, based in Malawi, aims to 1) combine local knowledge and conventional soil science approaches to develop a contextualised understanding of the impact of CA on soil health; and 2) understand how an integrated approach can contribute to explaining farmer decision-making on land management. Key farmers' indicators of soil health were crop performance, soil consistence, moisture content, erosion, colour, and structure. These local indicators were consistent with conventional soil health indicators. By combining farmers' observations with soil measurements, we observed that CA improved soil structure, moisture (Mwansambo 7.54%–38.15% lower for CP; Lemu 1.57%–47.39% lower for CP) and infiltration (Lemu CAM/CAML 0.15 cms−1, CP 0.09 cms−1; Mwansambo CP/CAM 0.14 cms−1, CAML 0.18 cms−1). In the conventional practice, farmers perceived ridges to redistribute nutrients, which corresponded with recorded higher exchangeable ammonium (Lemu CP 76.0 mgkg −1, CAM 49.4 mgkg −1, CAML 51.7 mgkg −1), nitrate/nitrite values (Mwansambo CP 200.7 mgkg −1, CAM 171.9 mgkg −1, CAML 103.3 mgkg −1). This perception contributes to the popularity of ridges, despite the higher yield measurements under CA (Mwansambo CP 3225 kgha-1, CAML 5067 kgha-1, CAM 5160 kgha-1; Lemu CP 2886 kgha-1, CAM 2872 kgha-1, CAML 3454 kgha-1 ). The perceived carbon benefits of residues and ridge preference has promoted burying residues in ridges. Integrated approaches contribute to more nuanced and localized perceptions about land management. We propose that the stepwise integrated soil assessment framework developed in this study can be applied more widely in understanding the role of soil health in farmer-decision making, providing a learning process for downscaling technologies and widening the evidence base on sustainable land management practices

    A universal uptake mechanism for cobalt(II) on soil constituents: ferrihydrite, kaolinite, humic acid, and organo-mineral composites

    Get PDF
    Cobalt is a waste product in many industrial processes and its most common radioactive isotope – ⁶⁰Co – is a by-product of nuclear reactors. To better understand the mobility and fate of Co in natural and contaminated environments we investigated Co sorption behaviour to the common soil and sediment constituents ferrihydrite, kaolinite, humic acid (HA), and ferrihydrite-HA and kaolinite-HA organo-mineral composites using sorption batch experiments, synchrotron X-ray absorption spectroscopy (EXAFS), and scanning transmission electron microscopy (STEM). We measured the sorption of Co to the end-member mineral and organic phases and the composites as a function of pH, ionic strength and Co concentration, and also for the composites as a function of organic carbon concentration, with composites made containing a wide range of organic carbon contents. We then determined the molecular mechanisms of Co sorption to the end-member phases and the composites, and used this information to develop molecularly constrained thermodynamic surface complexation models to quantify Co sorption. Sorption to the ferrihydrite-HA and kaolinite-HA organo-mineral composites was found to be intermediate to both of the end-member phases, displaying enhanced sorption respective to the mineral end-member phase at mid-low pH. EXAFS analysis shows that there is a universal sorption mechanism accounting for Co sorption to the end-member mineral and organic phases and the organo-mineral composites at mid-high pH, in which Co sorbs to these phases via inner-sphere bidentate binuclear surface complexes. At mid-low pH, sorption to all the phases except ferrihydrite is the result of outer-sphere complexation. Our new molecularly constrained thermodynamic surface complexation models for Co sorption to ferrihydrite, kaolinite, HA, and ferrihydrite-HA and kaolinite-HA organo-mineral composites, show that Co sorption to the composites cannot be modelled assuming linear additivity of Co sorption to the end-member phases

    Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    Get PDF
    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria

    Selective retention of extracellular polymeric substances induced by adsorption to and coprecipitation with ferrihydrite

    Get PDF
    Recent work shows that microbially-derived compounds constitute a significant fraction of the soil organic matter (OM) pool. These compounds include extracellular polymeric substances (EPS) whose mass can far exceed total microbial cell biomass. Sorption of EPS to soil minerals occurs via adsorption and coprecipitation and contributes to the preservation of OM in the soil environment. Little is known, however, about the sorption mechanisms of EPS and selective retention of different EPS constituents on iron (oxyhydr)oxides, especially during EPS adsorption versus coprecipitation with these reactive soil phases. This study examines how EPS interacts with the ubiquitous soil iron (oxyhydr)oxide ferrihydrite during EPS adsorption and coprecipitation and whether these different EPS-mineral association pathways affect EPS sorption and selective retention, and thus the mobility and fate of microbially-derived OM in the soil environment. We use several complimentary techniques to i) examine EPS-carbon, EPS-nitrogen and EPS-phosphorus sorption and fractionation, ii) visualize spatial relationships between EPS biomolecular classes and ferrihydrite using confocal laser scanning microscopy (CLSM), iii) determine EPS-C speciation and chemical fractionation with ferrihydrite using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and iv) determine functional group interactions with ferrihydrite using Fourier transform infrared spectroscopy (FTIR) combined with two-dimensional correlation spectroscopy (2D-COS) analysis. Results show that the coprecipitation of EPS does not change the ferrihydrite mineralogy, as the main mineral phase for EPS association, but it substantially increases the particle size of EPS-ferrihydrite. A substantial difference in the EPS mass fraction associated with the ferrihydrite is observed between the adsorption and coprecipitation experiments at an initial molar C/Fe ratio >1. The EPS-N is relatively enriched during the adsorption process, while more EPS-C and near-complete EPS-P are fixed in the coprecipitation process. XPS results show that the surface of the ferrihydrite formed through EPS adsorption is preferentially enriched with protein-like components, whereas, the surface of the ferrihydrite formed through EPS coprecipitation is enriched with polysaccharide-like components, which is visually confirmed with CLSM images. NEXAFS results reveal that the carboxylic/amide C-containing components are selectively retained during adsorption, with the aliphatic and O-alkyl C-containing components relatively enriched during coprecipitation. 2D-FTIR-COS results indicate that during EPS adsorption on ferrihydrite the Pdouble bondO functional groups are adsorbed faster than the amide and carboxylate functional groups, while during EPS coprecipitation with ferrihydrite the opposite trend is observed. The findings from this study indicate that the formation pathway of EPS-ferrihydrite associations substantially effects the sorption mechanisms and selective retention of EPS and may thus affect the mobility and fate of microbially-derived carbon (C), nitrogen (N) and phosphorus (P) in soils. These new insights on EPS behaviour at the mineral–water interface might be used to evaluate how microbially-derived compounds like EPS are stabilized by iron (oxyhydr)oxides and how EPS-iron (oxyhydr)oxide couplings might affect the reactivity and cycling of OM in natural environments

    Understanding amorphous silica scaling under well-constrained conditions inside geothermal pipelines

    Get PDF
    Amorphous silica is a common precipitate in modern and ancient hot springs and in geothermal power plants, yet the corresponding precipitation rates and mechanisms are still highly debated, primarily due to the plethora of parameters that can affect the reactions in natural waters. Here, we report the results from a first ever industrial-scale time-resolved (1 day to 10 weeks) study of silica precipitation conducted at the Hellisheiði geothermal power plant (SW-Iceland). We show that such in-work pipelines of a geothermal power plant are ideal environments to investigate silica precipitation because the physicochemical conditions are well constrained and constantly monitored. Our results document that amorphous silica forms via two distinct precipitation modes: (1) the fast deposition of continuous botryoidal silica layers and (2) the growth of 3D fan- or ridge-shaped silica aggregates. The continuous layers grow by heterogeneous nucleation and subsequent surface controlled growth by monomer addition. In contrary, the 3D aggregates form through homogeneous nucleation of silica nano- and microparticles in solution, followed by deposition and cementation on the surface of the botryoidal layer. From the time-resolved data, silica precipitation rates of over 1 g m−2 day-1 are derived. Over time, this deposition of silica on pipelines and fluid handling equipment is detrimental to geothermal power production. Our data does not only help improve our understanding of silica precipitation from geothermal fluids, but the determined silica precipitation mechanisms and rates help improve mitigation strategies against silica scaling inside in-work geothermal power plants
    • 

    corecore