45 research outputs found

    The costs of switching attentional sets

    Get PDF
    People prioritize those aspects of the visual environment that match their attentional set. In the present study, we investigated whether switching from one attentional set to another is associated with a cost. We asked observers to sequentially saccade toward two color-defined targets, one on the left side of the display, the other on the right, each among a set of heterogeneously colored distractors. The targets were of the same color (no attentional set switch required) or of different colors (switch of attentional sets necessary), with each color consistently tied to a side, to allow observers to maximally prepare for the switch. We found that saccades were less accurate and slower in the switch condition than in the no-switch condition. Furthermore, whenever one of the distractors had the color associated with the other attentional set, a substantial proportion of saccades did not end on the target, but on this distractor. A time course analysis revealed that this distractor preference turned into a target preference after about 250–300 ms, suggesting that this is the time required to switch attentional sets

    How Does Information Processing Speed Relate to the Attentional Blink?

    Get PDF
    Background When observers are asked to identify two targets in rapid sequence, they often suffer profound performance deficits for the second target, even when the spatial location of the targets is known. This attentional blink (AB) is usually attributed to the time required to process a previous target, implying that a link should exist between individual differences in information processing speed and the AB. Methodology/Principal Findings The present work investigated this question by examining the relationship between a rapid automatized naming task typically used to assess information-processing speed and the magnitude of the AB. The results indicated that faster processing actually resulted in a greater AB, but only when targets were presented amongst high similarity distractors. When target-distractor similarity was minimal, processing speed was unrelated to the AB. Conclusions/Significance Our findings indicate that information-processing speed is unrelated to target processing efficiency per se, but rather to individual differences in observers' ability to suppress distractors. This is consistent with evidence that individuals who are able to avoid distraction are more efficient at deploying temporal attention, but argues against a direct link between general processing speed and efficient information selection

    On the limits of top-down control of visual selection

    Get PDF
    In the present study, observers viewed displays in which two equally salient color singletons were simultaneously present. Before each trial, observers received a word cue (e.g., the word red, or green) or a symbolic cue (a circle colored red or green) telling them which color singleton to select on the upcoming trial. Even though many theories of visual search predict that observers should be able to selectively attend the target color singleton, the results of the present study show that observers could not select the target singleton without interference from the irrelevant color singleton. The results indicate that the irrelevant color singleton captured attention. Only when the color of the target singleton remained the same from one trial to the next was selection perfect—an effect that is thought to be the result of passive automatic intertrial priming. The results of the present study demonstrate the limits of top-down attentional control

    We can guide search by a set of colours, but are reluctant to do it.

    Get PDF
    For some real-world color searches, the target colours are not precisely known, and any item within a range of color values should be attended. This, a target representation that captures multiple similar colours would be advantageous. If such multicolour search is possible, then search for two targets (e..g Stroud, Menneer, Cave and Donnelly, 2012) might be guided by a target representation that included the target colours as well as the continuum of colours that fall between the targets within a contiguous region of color space. Results from Stroud et al (2012) suggest otherwise, however. The current set of experiments show that guidance for a set of colours that are from a single region of color space can be effective if targets are depicted as specific discrete colours. Specifically, Experiments 1-3 demonstrate that a search can be guided by four and even eight colours given the appropriate conditions. However, Experiment 5 gives evidence that guidance is sometimes sensitive to how informative the target preview is to search. Experiments 6 and 7 show that a stimulus showing a continuous range of target colours is not translated into a search target representation. Thus, search can be guided by multiple discrete colours that are from a single region in color space, but this approach was not adopted in a search for two targets with intervening distractor colours

    Saliency maps for finding changes in visual scenes?

    Get PDF
    Sudden changes in the environment reliably summon attention. This rapid change detection appears to operate in a similar fashion as pop-out in visual search, the phenomenon that very salient stimuli are directly attended, independently of the number of distracting objects. Pop-out is usually explained by the workings of saliency maps, i.e., map-like representations that code for the conspicuity at each location of the visual field. While past research emphasized similarities between pop-out search and change detection, our study highlights differences between the saliency computations in the two tasks: in contrast to pop-out search, saliency computation in change detection (i) operates independently across different stimulus properties (e.g., color and orientation), and (ii) is little influenced by trial history. These deviations from pop-out search are not due to idiosyncrasies of the stimuli or task design, as evidenced by a replication of standard findings in a comparable visual-search design. To explain these results, we outline a model of change detection involving the computation of feature-difference maps, which explains the known similarities and differences with visual search

    Sources of avoidance motivation: Valence effects from physical effort and mental rotation

    Get PDF
    When reaching goals, organisms must simultaneously meet the overarching goal of conserving energy. According to the law of least effort, organisms will select the means associated with the least effort. The mechanisms underlying this bias remain unknown. One hypothesis is that organisms come to avoid situations associated with unnecessary effort by generating a negative valence toward the stimuli associated with such situations. Accordingly, merely using a dysfunctional, ‘slow’ computer mouse causes participants to dislike ambient neutral images (Study 1). In Study 2, nonsense shapes were liked less when associated with effortful processing (135° of mental rotation) versus easier processing (45° of rotation). Complementing ‘fluency’ effects found in perceptuo-semantic research, valence emerged from action-related processing in a principled fashion. The findings imply that negative valence associations may underlie avoidance motivations, and have practical implications for educational/workplace contexts in which effort and positive affect are conducive to success

    Subliminal Salience Search Illustrated: EEG Identity and Deception Detection on the Fringe of Awareness

    Get PDF
    We propose a novel deception detection system based on Rapid Serial Visual Presentation (RSVP). One motivation for the new method is to present stimuli on the fringe of awareness, such that it is more difficult for deceivers to confound the deception test using countermeasures. The proposed system is able to detect identity deception (by using the first names of participants) with a 100% hit rate (at an alpha level of 0.05). To achieve this, we extended the classic Event-Related Potential (ERP) techniques (such as peak-to-peak) by applying Randomisation, a form of Monte Carlo resampling, which we used to detect deception at an individual level. In order to make the deployment of the system simple and rapid, we utilised data from three electrodes only: Fz, Cz and Pz. We then combined data from the three electrodes using Fisher's method so that each participant was assigned a single p-value, which represents the combined probability that a specific participant was being deceptive. We also present subliminal salience search as a general method to determine what participants find salient by detecting breakthrough into conscious awareness using EEG

    Top-down influences on attentional capture by color changes

    No full text
    Previous studies have shown that a change in an existing object is not as effective in capturing attention as the appearance of a new object. This view was recently challenged by Lu and Zhou (Psychonomic Bulletin and Review 12:567-572, 2005), who found strong capture effects for an object changing its color. We suspected that this finding critically depends on a procedural particularity in Lu and Zhou's study, namely that the color of the unique item and the color of the no-unique items randomly switched between trials. In the current study we replicate Lu and Zhou's capture effect (Experiment 1) and show that no capture occurs when the color-to-stimuli assignment is fixed (Experiment 2). Two further experiments suggest that the capture effect in Experiment 1 is not because the unique item switched color (Experiment 3), but because all the no-unique items switched color (Experiment 4). The results are discussed considering top-down modulation and inter-trial priming effects
    corecore