2,887 research outputs found

    COLOR III: a multicentre randomised clinical trial comparing transanal TME versus laparoscopic TME for mid and low rectal cancer

    Get PDF
    Total mesorectal excision (TME) is an essential component of surgical management of rectal cancer. Both open and laparoscopic TME have been proven to be oncologically safe. However, it remains a challenge to achieve complete TME with clear circumferential resections margin (CRM) with the conventional transabdominal approach, particularly in mid and low rectal tumours. Transanal TME (TaTME) was developed to improve oncological and functional outcomes of patients with mid and low rectal cancer.An international, multicentre, superiority, randomised trial was designed to compare TaTME and conventional laparoscopic TME as the surgical treatment of mid and low rectal carcinomas. The primary endpoint is involved CRM. Secondary endpoints include completeness of mesorectum, residual mesorectum, morbidity and mortality, local recurrence, disease-free and overall survival, percentage of sphincter-saving procedures, functional outcome and quality of life. A Quality Assurance Protocol including centralised MRI review, histopathology re-evaluation, standardisation of surgical techniques, and monitoring and assessment of surgical quality will be conducted.The difference in involvement of CRM between the two treatment strategies is thought to be in favour of the TaTME. TaTME is therefore expected to be superior to laparoscopic TME in terms of oncological outcomes in case of mid and low rectal carcinomas

    Effectiveness of denosumab for fracture prevention in real-world postmenopausal women with osteoporosis: a retrospective cohort study

    Get PDF
    Summary: To determine denosumab’s effectiveness for fracture prevention among postmenopausal women with osteoporosis in East Asia, the risk of fracture was compared between patients continuing denosumab therapy versus patients discontinuing denosumab after one dose. The real-world effectiveness was observed to be consistent with the efficacy demonstrated in the phase III trial. Introduction: After therapeutic efficacy is demonstrated for subjects in global clinical trials, real-world evidence may provide complementary knowledge of therapeutic effectiveness in a heterogeneous mix of patients seen in clinical practice. This retrospective cohort study was conducted to compare the fracture risk in real-world clinical care received in Taiwan and Hong Kong between a treatment cohort (patients receiving denosumab 60 mg subcutaneously every 6 months) versus an off-treatment cohort (patients discontinuing after 1 dose of denosumab, which has no known clinical benefit) among real-world postmenopausal women. Methods: This study included 38,906 and 2,835 postmenopausal women receiving denosumab in Taiwan and Hong Kong, respectively. The primary endpoint was hip fracture, and secondary endpoints were clinical vertebral and nonvertebral fractures. Propensity-score-matched analysis, adjusting for known covariates, was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). The robustness of findings was evaluated with a series of sensitivity and quantitative bias analyses. Results: In this study, 554 hip fractures were included in the primary Taiwan population analysis. The crude incidence rate was 0.9 per 100 person-years in the treatment cohort (n = 25,059) and 1.7 per 100 person-years in the off-treatment cohort (n = 13,847). After adjusting for prognostic differences between cohorts, denosumab reduced the risk of hip fractures by 38% (HR = 0.62, CI:0.52–0.75). Risk reductions of similar magnitude were observed for the secondary endpoints and for the analysis of the smaller Hong Kong population. Conclusion: The effectiveness of denosumab for fracture reduction among real-world postmenopausal women with osteoporosis was consistent with the efficacy demonstrated in a global clinical trial

    Sensing remote nuclear spins

    Full text link
    Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a nitrogen-vacancy centre in diamond. With dynamical decoupling control of the centre electron spin, the weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the centre with hyperfine coupling as weak as ~500 Hz is amplified and detected. The quantum nature of the coupling is confirmed and precise position and the vector components of the nuclear field are determined. Given the distance over which nuclear magnetic fields can be detected the technique marks a firm step towards imaging, detecting and controlling nuclear spin species external to the diamond sensor

    A robust, scanning quantum system for nanoscale sensing and imaging

    Get PDF
    Controllable atomic-scale quantum systems hold great potential as sensitive tools for nanoscale imaging and metrology. Possible applications range from nanoscale electric and magnetic field sensing to single photon microscopy, quantum information processing, and bioimaging. At the heart of such schemes is the ability to scan and accurately position a robust sensor within a few nanometers of a sample of interest, while preserving the sensor's quantum coherence and readout fidelity. These combined requirements remain a challenge for all existing approaches that rely on direct grafting of individual solid state quantum systems or single molecules onto scanning-probe tips. Here, we demonstrate the fabrication and room temperature operation of a robust and isolated atomic-scale quantum sensor for scanning probe microscopy. Specifically, we employ a high-purity, single-crystalline diamond nanopillar probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the versatility and performance of our scanning NV sensor by conducting quantitative nanoscale magnetic field imaging and near-field single-photon fluorescence quenching microscopy. In both cases, we obtain imaging resolution in the range of 20 nm and sensitivity unprecedented in scanning quantum probe microscopy

    Isolation and characterization of equine native MSC populations

    Get PDF
    Abstract Background In contrast to humans in which mesenchymal stem/stromal cell (MSC) therapies are still largely in the clinical trial phase, MSCs have been used therapeutically in horses for over 15 years, thus constituting a valuable preclinical model for humans. In human tissues, MSCs have been shown to originate from perivascular cells, namely pericytes and adventitial cells, which are identified by the presence of the cell surface markers CD146 and CD34, respectively. In contrast, the origin of MSCs in equine tissues has not been established, preventing the isolation and culture of defined cell populations in that species. Moreover, a comparison between perivascular CD146+ and CD34+ cell populations has not been performed in any species. Methods Immunohistochemistry was used to identify adventitial cells (CD34+) and pericytes (CD146+) and to determine their localization in relation to MSCs in equine tissues. Isolation of CD34+ (CD34+/CD146–/CD144–/CD45–) and CD146+ (CD146+/CD34–/CD144–/CD45–) cell fractions from equine adipose tissue was achieved by fluorescence-activated cell sorting. The isolated cell fractions were cultured and analyzed for the expression of MSC markers, using qPCR and flow cytometry, and for the ability to undergo trilineage differentiation. Angiogenic properties were analyzed in vivo using a chorioallantoic membrane (CAM) assay. Results Both CD34+ and CD146+ cells displayed typical MSC features, namely growth in uncoated tissue culture dishes, clonal growth when seeded at low density, expression of typical MSC markers, and multipotency shown by the capacity for trilineage differentiation. Of note, CD146+ cells were distinctly angiogenic compared with CD34+ and non-sorted cells (conventional MSCs), demonstrated by the induction of blood vessels in a CAM assay, expression of elevated levels of VEGFA and ANGPT1, and association with vascular networks in cocultures with endothelial cells, indicating that CD146+ cells maintain a pericyte phenotype in culture. Conclusion This study reports for the first time the successful isolation and culture of CD146+ and CD34+ cell populations from equine tissues. Characterization of these cells evidenced their distinct properties and MSC-like phenotype, and identified CD146+ cells as distinctly angiogenic, which may provide a novel source for enhanced regenerative therapies

    A New Minimal-Stress Freely-Moving Rat Model for Preclinical Studies on Intranasal Administration of CNS Drugs

    Get PDF
    Purpose. To develop a new minimal-stress model for intranasal administration in freely moving rats and to evaluate in this model the brain distribution of acetaminophen following intranasal versus intravenous administration. Methods. Male Wistar rats received one intranasal cannula, an intra-cerebral microdialysis probe, and two blood cannulas for drug administration and serial blood sampling respectively. To evaluate this novel model, the following experiments were conducted. 1) Evans Blue was administered to verify the selectivity of intranasal exposure. 2) During a 1 min infusion 10, 20, or 40 μl saline was administered intranasally or 250 µl intravenously. Corticosterone plasma concentrations over time were compared as biomarkers for stress. 3) 200 µg of the model drug acetaminophen was given in identical setup and plasma, and brain pharmacokinetics were determined. Results. In 96 % of the rats, only the targeted nasal cavity was deeply colored. Corticosterone plasma concentrations were not influenced, neither by route nor volume of administration. Pharmacokinetics of acetaminophen were identical after intravenous and intranasal administration, although the Cmax in microdialysates was reached a little earlier following intravenous administration. Conclusion. A new minimal-stress model for intranasal administration in freely moving rats has been successfully developed and allows direct comparison with intravenous administration. KEY WORDS: acetaminophen; brain; intranasal infusion; microdialysis; pharmacokinetics

    Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    Get PDF
    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs

    Cardiac biomarkers of prognostic importance in chronic obstructive pulmonary disease

    Get PDF
    Background: Ischemic heart disease is common in COPD and associated with worse prognosis. This study aimed to investigate the presence and prognostic impact of biomarkers of myocardial injury and ischemia among individuals with COPD and normal lung function, respectively. Methods: In 2002–04, all individuals with airway obstruction (FEV1/VC < 0.70, n = 993) were identified from population-based cohorts, together with age and sex-matched non-obstructive referents. At re-examination in 2005, spirometry, Minnesota-coded ECG and analyses of high-sensitivity cardiac troponin I (hs-cTnI) were performed in individuals with COPD (n = 601) and those with normal lung function (n = 755). Deaths were recorded until December 31st, 2010. Results: Hs-cTnI concentrations were above the risk stratification threshold of ≥5 ng/L in 31.1 and 24.9% of those with COPD and normal lung function, respectively. Ischemic ECG abnormalities were present in 14.8 and 13.4%, while 7.7 and 6.6% had both elevated hs-cTnI concentrations and ischemic ECG abnormalities. The 5-year cumulative mortality was higher in those with COPD than those with normal lung function (13.6% vs. 7.7%, p < 0.001). Among individuals with COPD, elevated hs-cTnI both independently and in combination with ischemic ECG abnormalities were associated with an increased risk for death (adjusted hazard ratio [HR]; 95% confidence interval [CI] 2.72; 1.46–5.07 and 4.54; 2.25–9.13, respectively). Similar associations were observed also among individuals with COPD without reported ischemic heart disease. Conclusions: In this study, elevated hs-cTnI concentrations in combination with myocardial ischemia on the electrocardiogram were associated with a more than four-fold increased risk for death in a population-based COPD-cohort, independent of disease severity

    Truncated Inference for Latent Variable Optimization Problems: Application to Robust Estimation and Learning

    Full text link
    Optimization problems with an auxiliary latent variable structure in addition to the main model parameters occur frequently in computer vision and machine learning. The additional latent variables make the underlying optimization task expensive, either in terms of memory (by maintaining the latent variables), or in terms of runtime (repeated exact inference of latent variables). We aim to remove the need to maintain the latent variables and propose two formally justified methods, that dynamically adapt the required accuracy of latent variable inference. These methods have applications in large scale robust estimation and in learning energy-based models from labeled data.Comment: 16 page

    A Systematic Review of Side Effects of Nucleoside and Nucleotide Drugs Used for Treatment of Chronic Hepatitis B

    Get PDF
    Although nucleosides and nucleotides have a good safety record for the treatment of hepatitis B, there have been no systematic reviews on this topic. We searched Medline to include studies of the oral antiviral agents for hepatitis B and adverse events, with at least 48 weeks of follow-up from the initiation of treatment with the drug. Important toxicities include nephrotoxicity, myopathy, and resistance. It is often difficult to ascertain whether an adverse effect is from the study drug or the natural progression of the disease. Further safety data are needed for the newer agents and for all agents with regard to patients with decompensated liver disease, renal dysfunction, the elderly, children, and pregnant women
    corecore