1,363 research outputs found
Recommended from our members
Obesity and prostate cancer-specific mortality after radical prostatectomy: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database.
BackgroundAt the population level, obesity is associated with prostate cancer (PC) mortality. However, few studies analyzed the associations between obesity and long-term PC-specific outcomes after initial treatment.MethodsWe conducted a retrospective analysis of 4268 radical prostatectomy patients within the Shared Equal Access Regional Cancer Hospital (SEARCH) database. Cox models accounting for known risk factors were used to examine the associations between body mass index (BMI) and PC-specific mortality (PCSM; primary outcome). Secondary outcomes included biochemical recurrence (BCR) and castration-resistant PC (CRPC). BMI was used as a continuous and categorical variable (normal <25 kg/m2, overweight 25-29.9 kg/m2 and obese ⩾30 kg/m2). Median follow-up among all men who were alive at last follow-up was 6.8 years (interquartile range=3.5-11.0). During this time, 1384 men developed BCR, 117 developed CRPC and 84 died from PC. Hazard ratios were analyzed using competing-risks regression analysis accounting for non-PC death as a competing risk.ResultsOn crude analysis, higher BMI was not associated with risk of PCSM (P=0.112), BCR (0.259) and CRPC (P=0.277). However, when BMI was categorized, overweight (hazard ratio (HR) 1.99, P=0.034) and obesity (HR 1.97, P=0.048) were significantly associated with PCSM. Obesity and overweight were not associated with BCR or CRPC (all P⩾0.189). On multivariable analysis adjusting for both clinical and pathological features, results were little changed in that obesity (HR=2.05, P=0.039) and overweight (HR=1.88, P=0.061) were associated with higher risk of PCSM, but not with BCR or CRPC (all P⩾0.114) with the exception that the association for overweight was no longer statistical significant.ConclusionsOverweight and obesity were associated with increased risk of PCSM after radical prostatectomy. If validated in larger studies with longer follow-up, obesity may be established as a potentially modifiable risk factor for PCSM
Local Thermometry of Neutral Modes on the Quantum Hall Edge
A system of electrons in two dimensions and strong magnetic fields can be
tuned to create a gapped 2D system with one dimensional channels along the
edge. Interactions among these edge modes can lead to independent transport of
charge and heat, even in opposite directions. Measuring the chirality and
transport properties of these charge and heat modes can reveal otherwise hidden
structure in the edge. Here, we heat the outer edge of such a quantum Hall
system using a quantum point contact. By placing quantum dots upstream and
downstream along the edge of the heater, we can measure both the chemical
potential and temperature of that edge to study charge and heat transport,
respectively. We find that charge is transported exclusively downstream, but
heat can be transported upstream when the edge has additional structure related
to fractional quantum Hall physics.Comment: 24 pages, 18 figure
The space group classification of topological band insulators
Topological band insulators (TBIs) are bulk insulating materials which
feature topologically protected metallic states on their boundary. The existing
classification departs from time-reversal symmetry, but the role of the crystal
lattice symmetries in the physics of these topological states remained elusive.
Here we provide the classification of TBIs protected not only by time-reversal,
but also by crystalline symmetries. We find three broad classes of topological
states: (a) Gamma-states robust against general time-reversal invariant
perturbations; (b) Translationally-active states protected from elastic
scattering, but susceptible to topological crystalline disorder; (c) Valley
topological insulators sensitive to the effects of non-topological and
crystalline disorder. These three classes give rise to 18 different
two-dimensional, and, at least 70 three-dimensional TBIs, opening up a route
for the systematic search for new types of TBIs.Comment: Accepted in Nature Physic
Topological modes bound to dislocations in mechanical metamaterials
Mechanical metamaterials are artificial structures with unusual properties,
such as negative Poisson ratio, bistability or tunable vibrational properties,
that originate in the geometry of their unit cell. At the heart of such unusual
behaviour is often a soft mode: a motion that does not significantly stretch or
compress the links between constituent elements. When activated by motors or
external fields, soft modes become the building blocks of robots and smart
materials. Here, we demonstrate the existence of topological soft modes that
can be positioned at desired locations in a metamaterial while being robust
against a wide range of structural deformations or changes in material
parameters. These protected modes, localized at dislocations, are the
mechanical analogue of topological states bound to defects in electronic
systems. We create physical realizations of the topological modes in prototypes
of kagome lattices built out of rigid triangular plates. We show mathematically
that they originate from the interplay between two Berry phases: the Burgers
vector of the dislocation and the topological polarization of the lattice. Our
work paves the way towards engineering topologically protected nano-mechanical
structures for molecular robotics or information storage and read-out.Comment: 13 pages, 6 figures; changes to text and figures and added analysis
on mode localization; see
http://www.lorentz.leidenuniv.nl/~paulose/dislocation-modes/ for accompanying
video
Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials
Recent progress in understanding the topological properties of condensed
matter has led to the discovery of time-reversal invariant topological
insulators. Because of limitations imposed by nature, topologically non-trivial
electronic order seems to be uncommon except in small-band-gap semiconductors
with strong spin-orbit interactions. In this Article we show that artificial
electromagnetic structures, known as metamaterials, provide an attractive
platform for designing photonic analogues of topological insulators. We
demonstrate that a judicious choice of the metamaterial parameters can create
photonic phases that support a pair of helical edge states, and that these edge
states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure
Phase diagram of a Bose gas near a wide Feshbach resonance
In this paper, we study the phase diagram of a homogeneous Bose gas with a
repulsive interaction near a wide Feshbach resonance at zero temperature. The
Bose-Einstein-condensation (BEC) state of atoms is a metastable state. When the
scattering length exceeds a critical value depending on the atom density
, , the molecular excitation energy is imaginary and the atomic
BEC state is dynamically unstable against molecule formation. The BEC state of
diatomic molecules has lower energy, where the atomic excitation is gapped and
the molecular excitation is gapless. However when the scattering length is
above another critical value, , the molecular BEC state becomes a
unstable coherent mixture of atoms and molecules. In both BEC states, the
binding energy of diatomic molecules is reduced due to the many-body effect.Comment: 5 pages, 4 figure
Graphene for spintronics: giant Rashba splitting due to hybridization with Au
Graphene in spintronics has so far primarily meant spin current leads of high
performance because the intrinsic spin-orbit coupling of its pi-electrons is
very weak. If a large spin-orbit coupling could be created by a proximity
effect, the material could also form active elements of a spintronic device
such as the Das-Datta spin field-effect transistor, however, metal interfaces
often compromise the band dispersion of massless Dirac fermions. Our
measurements show that Au intercalation at the graphene-Ni interface creates a
giant spin-orbit splitting (~100 meV) in the graphene Dirac cone up to the
Fermi energy. Photoelectron spectroscopy reveals hybridization with Au-5d
states as the source for the giant spin-orbit splitting. An ab initio model of
the system shows a Rashba-split dispersion with the analytically predicted
gapless band topology around the Dirac point of graphene and indicates that a
sharp graphene-Au interface at equilibrium distance will account for only ~10
meV spin-orbit splitting. The ab initio calculations suggest an enhancement due
to Au atoms that get closer to the graphene and do not violate the sublattice
symmetry.Comment: 16 pages (3 figures) + supplementary information 16 pages (14
figures
Static non-reciprocity in mechanical metamaterials
Reciprocity is a fundamental principle governing various physical systems,
which ensures that the transfer function between any two points in space is
identical, regardless of geometrical or material asymmetries. Breaking this
transmission symmetry offers enhanced control over signal transport, isolation
and source protection. So far, devices that break reciprocity have been mostly
considered in dynamic systems, for electromagnetic, acoustic and mechanical
wave propagation associated with spatio-temporal variations. Here we show that
it is possible to strongly break reciprocity in static systems, realizing
mechanical metamaterials that, by combining large nonlinearities with suitable
geometrical asymmetries, and possibly topological features, exhibit vastly
different output displacements under excitation from different sides, as well
as one-way displacement amplification. In addition to extending non-reciprocity
and isolation to statics, our work sheds new light on the understanding of
energy propagation in non-linear materials with asymmetric crystalline
structures and topological properties, opening avenues for energy absorption,
conversion and harvesting, soft robotics, prosthetics and optomechanics.Comment: 19 pages, 3 figures, Supplementary information (11 pages and 5
figures
Topological Crystalline Insulators in the SnTe Material Class
Topological crystalline insulators are new states of matter in which the
topological nature of electronic structures arises from crystal symmetries.
Here we predict the first material realization of topological crystalline
insulator in the semiconductor SnTe, by identifying its nonzero topological
index. We predict that as a manifestation of this nontrivial topology, SnTe has
metallic surface states with an even number of Dirac cones on high-symmetry
crystal surfaces such as {001}, {110} and {111}. These surface states form a
new type of high-mobility chiral electron gas, which is robust against disorder
and topologically protected by reflection symmetry of the crystal with respect
to {110} mirror plane. Breaking this mirror symmetry via elastic strain
engineering or applying an in-plane magnetic field can open up a continuously
tunable band gap on the surface, which may lead to wide-ranging applications in
thermoelectrics, infrared detection, and tunable electronics. Closely related
semiconductors PbTe and PbSe also become topological crystalline insulators
after band inversion by pressure, strain and alloying.Comment: submitted on Feb. 10, 2012; to appear in Nature Communications; 5
pages, 4 figure
Tunable Multifunctional Topological Insulators in Ternary Heusler Compounds
Recently the Quantum Spin Hall effect (QSH) was theoretically predicted and
experimentally realized in a quantum wells based on binary semiconductor
HgTe[1-3]. QSH state and topological insulators are the new states of quantum
matter interesting both for fundamental condensed matter physics and material
science[1-11]. Many of Heusler compounds with C1b structure are ternary
semiconductors which are structurally and electronically related to the binary
semiconductors. The diversity of Heusler materials opens wide possibilities for
tuning the band gap and setting the desired band inversion by choosing
compounds with appropriate hybridization strength (by lattice parameter) and
the magnitude of spin-orbit coupling (by the atomic charge). Based on the
first-principle calculations we demonstrate that around fifty Heusler compounds
show the band inversion similar to HgTe. The topological state in these
zero-gap semiconductors can be created by applying strain or by designing an
appropriate quantum well structure, similar to the case of HgTe. Many of these
ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the
rare earth element Ln which can realize additional properties ranging from
superconductivity (e. g. LaPtBi[12]) to magnetism (e. g. GdPtBi[13]) and
heavy-fermion behavior (e. g. YbPtBi[14]). These properties can open new
research directions in realizing the quantized anomalous Hall effect and
topological superconductors.Comment: 20 pages, 5 figure
- …