46,518 research outputs found
The phylogenetic conundrum of Lutzia(Diptera: Culicidae: Culicini): a cautionary account of conflict and support
This is an open access article, available to all readers online, published under a creative commons licensing (https://creativecommons.org/licenses/by/4.0/). This document is the author's submitted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it
Classical diffusion of N interacting particles in one dimension: General results and asymptotic laws
I consider the coupled one-dimensional diffusion of a cluster of N classical
particles with contact repulsion. General expressions are given for the
probability distributions, allowing to obtain the transport coefficients. In
the limit of large N, and within a gaussian approximation, the diffusion
constant is found to behave as N^{-1} for the central particle and as (\ln
N)^{-1} for the edge ones. Absolute correlations between the edge particles
increase as (\ln N)^{2}. The asymptotic one-body distribution is obtained and
discussed in relation of the statistics of extreme events.Comment: 6 pages, 2 eps figure
An unusual case of pancreatic fistula.
We report an unusual case of a pancreatic fistula communicating with an appendicectomy wound. This occurred following an episode of acute haemorrhagic pancreatitis. The patient was initially admitted with signs and symptoms indicating appendicitis and went to theatre for an open appendicectomy. However, this did not resolve his symptoms and a laparotomy was performed the next day revealing haemorrhagic pancreatitis. He endured a stormy post-operative course, the cause of which was found to be an external pancreatic fistula with discharge of amylase-rich fluid from the Lanz incision. A trial of conservative management failed despite multiple percutaneous drainage procedures and treatment with broad-spectrum antibiotics. After a second opinion was sought, it was decided to fit a roux loop anastomosis between the head of the pancreas and the duodenum to divert the fistulous fluid. This procedure was a success and the patient remains well 2 years later
Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire
Soon after the first measurements of nuclear magnetic resonance (NMR) in a
condensed matter system, Bloch predicted the presence of statistical
fluctuations proportional to in the polarization of an ensemble of
spins. First observed by Sleator et al., so-called "spin noise" has
recently emerged as a critical ingredient in nanometer-scale magnetic resonance
imaging (nanoMRI). This prominence is a direct result of MRI resolution
improving to better than 100 nm^3, a size-scale in which statistical spin
fluctuations begin to dominate the polarization dynamics. We demonstrate a
technique that creates spin order in nanometer-scale ensembles of nuclear spins
by harnessing these fluctuations to produce polarizations both larger and
narrower than the natural thermal distribution. We focus on ensembles
containing ~10^6 phosphorus and hydrogen spins associated with single InP and
GaP nanowires (NWs) and their hydrogen-containing adsorbate layers. We monitor,
control, and capture fluctuations in the ensemble's spin polarization in
real-time and store them for extended periods. This selective capture of large
polarization fluctuations may provide a route for enhancing the weak magnetic
signals produced by nanometer-scale volumes of nuclear spins. The scheme may
also prove useful for initializing the nuclear hyperfine field of electron spin
qubits in the solid-state.Comment: 18 pages, 5 figure
Retinal thickness in eyes with mild nonproliferative retinopathy in patients with type 2 diabetes mellitus: comparison of measurements obtained by retinal thickness analysis and optical coherence tomography
OBJECTIVE: To compare measurements of retinal thickness in eyes with mild nonproliferative retinopathy in patients with type 2 diabetes mellitus using 2 different techniques: the retinal thickness analyzer (RTA) and optical coherence tomography (OCT).
METHODS: Twenty-eight eyes from 28 patients with type 2 diabetes mellitus and mild nonproliferative retinopathy were classified according to the Wisconsin grading system by 7-field stereoscopic fundus photography. Ten eyes were classified as level 10 (absence of visible lesions) and 18 as level 20 or 35 (minimal retinopathy). All eyes were examined by the RTA and OCT. Healthy populations were used to establish reference maps for the RTA (n = 14; mean age, 48 years; age range, 42-55 years) and OCT (n = 10; mean age, 56 years; age range, 43-68 years). Reference maps were computed using the means + 2 SDs of the values obtained for each location. Increases in thickness were computed as a percentage of increase over these reference maps.
RESULTS: The RTA detected increases in thickness in 1 or more locations in 24 of the 28 diabetic eyes examined, whereas OCT detected increases in only 3 eyes. The percentages of increase detected by the RTA ranged from 0.3% to 73.5%, whereas OCT detected percentages of increase of 0.3% to 4.8%.
CONCLUSION: Optical coherence tomography is less sensitive than the RTA in detecting localized increases in retinal thickness in the initial stages of diabetic retinal disease
Startup of the High-Intensity Ultracold Neutron Source at the Paul Scherrer Institute
Ultracold neutrons (UCN) can be stored in suitable bottles and observed for
several hundreds of seconds. Therefore UCN can be used to study in detail the
fundamental properties of the neutron. A new user facility providing ultracold
neutrons for fundamental physics research has been constructed at the Paul
Scherrer Institute, the PSI UCN source. Assembly of the facility finished in
December 2010 with the first production of ultracold neutrons. Operation
approval was received in June 2011. We give an overview of the source and the
status at startup.Comment: Proceedings of the International Conference on Exotic Atoms and
Related Topics - EXA2011 September 5-9, 2011 Austrian Academy of Sciences,
Theatersaal, Sonnenfelsgasse 19, 1010 Wien, Austria 6 pages, 3 figure
A mutation in caspase-9 decreases the expression of BAFFR and ICOS in patients with immunodeficiency and lymphoproliferation
Lymphocyte apoptosis is mainly induced by either death receptor-dependent activation of caspase-8 or mitochondria-dependent activation of caspase-9. Mutations in caspase-8 lead to autoimmunity/lymphoproliferation and immunodeficiency. This work describes a heterozygous H237P mutation in caspase-9 that can lead to similar disorders. H237P mutation was detected in two patients: Pt1 with autoimmunity/lymphoproliferation, severe hypogammaglobulinemia and Pt2 with mild hypogammaglobulinemia and Burkitt lymphoma. Their lymphocytes displayed defective caspase-9 activity and decreased apoptotic and activation responses. Transfection experiments showed that mutant caspase-9 display defective enzyme and proapoptotic activities and a dominant-negative effect on wild-type caspase-9. Ex vivo analysis of the patients' lymphocytes and in vitro transfection experiments showed that the expression of mutant caspase-9 correlated with a downregulation of BAFFR (B-cell-activating factor belonging to the TNF family (BAFF) receptor) in B cells and ICOS (inducible T-cell costimulator) in T cells. Both patients carried a second inherited heterozygous mutation missing in the relatives carrying H237P: Pt1 in the transmembrane activator and CAML interactor (TACI) gene (S144X) and Pt2 in the perforin (PRF1) gene (N252S). Both mutations have been previously associated with immunodeficiencies in homozygosis or compound heterozygosis. Taken together, these data suggest that caspase-9 mutations may predispose to immunodeficiency by cooperating with other genetic factors, possibly by downregulating the expression of BAFFR and ICO
Recommended from our members
An Overview of the Use of Neural Networks for Data Mining Tasks
In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks
A massive reservoir of low-excitation molecular gas at high redshift
Molecular hydrogen is an important component of galaxies because it fuels
star formation and accretion onto AGN, the two processes that generate the
large infrared luminosities of gas-rich galaxies. Observations of spectral-line
emission from the tracer molecule CO are used to probe the properties of this
gas. But the lines that have been studied in the local Universe, mostly the
lower rotational transitions of J = 1-0 and J = 2-1, have hitherto been
unobservable in high-redshift galaxies. Instead, higher transitions have been
used, although the densities and temperatures required to excite these higher
transitions may not be reached by much of the gas. As a result, past
observations may have underestimated the total amount of molecular gas by a
substantial amount. Here we report the discovery of large amounts of
low-excitation molecular gas around the infrared-luminous quasar, APM
08279+5255 at z = 3.91, using the two lowest excitation lines of 12CO (J = 1-0
and J = 2-1). The maps confirm the presence of hot and dense gas near the
nucleus, and reveal an extended reservoir of molecular gas with low excitation
that is 10 to 100 times more massive than the gas traced by higher-excitation
observations. This raises the possibility that significant amounts of
low-excitation molecular gas may lurk in the environments of high-redshift (z >
3) galaxies.Comment: To appear as a Letter to Nature, 4th January 200
The importance of the weak: Interaction modifiers in artificial spin ices
The modification of geometry and interactions in two-dimensional magnetic
nanosystems has enabled a range of studies addressing the magnetic order,
collective low-energy dynamics, and emergent magnetic properties, in e.g.
artificial spin ice structures. The common denominator of all these
investigations is the use of Ising-like mesospins as building blocks, in the
form of elongated magnetic islands. Here we introduce a new approach: single
interaction modifiers, using slave-mesospins in the form of discs, within which
the mesospin is free to rotate in the disc plane. We show that by placing these
on the vertices of square artificial spin ice arrays and varying their
diameter, it is possible to tailor the strength and the ratio of the
interaction energies. We demonstrate the existence of degenerate ice-rule
obeying states in square artificial spin ice structures, enabling the
exploration of thermal dynamics in a spin liquid manifold. Furthermore, we even
observe the emergence of flux lattices on larger length-scales, when the energy
landscape of the vertices is reversed. The work highlights the potential of a
design strategy for two-dimensional magnetic nano-architectures, through which
mixed dimensionality of mesospins can be used to promote thermally emergent
mesoscale magnetic states.Comment: 17 pages, including methods, 4 figures. Supplementary information
contains 16 pages and 15 figure
- …
