27 research outputs found
Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish
Investigating neuronal and photoreceptor regeneration in the retina of zebra fish has begun to yield insights into both the cellular and molecular means by which this lower vertebrate is able to repair its central nervous system. However, knowledge about the signaling molecules in the local microenvironment of a retinal injury and the transcriptional events they activate during neuronal death and regeneration is still lacking. To identify genes involved in photoreceptor regeneration, we combined light-induced photoreceptor lesions, laser-capture microdissection of the outer nuclear layer (ONL) and analysis of gene expression to characterize transcriptional changes for cells in the ONL as photoreceptors die and are regenerated. Using this approach, we were able to characterize aspects of the molecular signature of injured and dying photoreceptors, cone photoreceptor progenitors, and microglia within the ONL. We validated changes in gene expression and characterized the cellular expression for three novel, extracellular signaling molecules that we hypothesize are involved in regulating regenerative events in the retina
Genetic Variation in the Complete MgPa Operon and Its Repetitive Chromosomal Elements in Clinical Strains of Mycoplasma genitalium
Mycoplasma genitalium has been increasingly recognized as an important microbe not only because of its significant association with human genital tract diseases but also because of its utility as a model for studying the minimum set of genes necessary to sustain life. Despite its small genome, 4.7% of the total genome sequence is devoted to making the MgPa adhesin operon and its nine chromosomal repetitive elements (termed MgPars). The MgPa operon, along with 9 MgPars, is believed to play an important role in pathogenesis of M. genitalium infection and has also served as the main target for development of diagnostic tools. However, genetic variation in the complete MgPa operon and MgPars among clinical strains of M. genitalium has not been addressed. In this study we examined the genetic variation in the complete MgPa operon (approximately 8.5 kb) and full or partial MgPar sequences (0.4–2.6 kb) in 15 geographically diverse strains of M. genitalium. Extensive variation was present in four repeat regions of the MgPa operon (with homology to MgPars) among and within strains while the non-repeat regions (without homology to MgPars) showed low-level variation among strains and no variation within strains. MgPars showed significant variation among strains but were highly homogeneous within strains, supporting gene conversion as the likely recombination mechanism. When applying our sequence data to evaluate published MgPa operon-based diagnostic PCR assays and genotyping systems, we found that 11 of 19 primers contain up to 19 variable nucleotides and that the target for one of two typing systems is located in a hypervariable repeat region, suggesting the likelihood of false results with some of these assays. This study not only provides new insights into the role of the MgPa operon in the pathogenesis of M. genitalium infection but has important implications for the development of diagnostic tools
Perceived difficulty and appropriateness of decision making by General Practitioners: a systematic review of scenario studies
Background: Health-care quality in primary care depends largely on the appropriateness of General Practitioners’ (GPs; Primary Care or Family Physicians) decisions, which may be influenced by how difficult they perceive decisions to be. Patient scenarios (clinical or case vignettes) are widely used to investigate GPs’ decision making. This review aimed to identify the extent to which perceived decision difficulty, decision appropriateness, and their relationship have been assessed in scenario studies of GPs’ decision making; identify possible determinants of difficulty and appropriateness; and investigate the relationship between difficulty and appropriateness.
Methods: MEDLINE, EMBASE, PsycINFO, the Cochrane Library and Web of Science were searched for scenario studies of GPs’ decision making. One author completed article screening. Ten percent of titles and abstracts were checked by an independent volunteer, resulting in 91% agreement. Data on decision difficulty and appropriateness were extracted by one author and descriptively synthesised. Chi-squared tests were used to explore associations between decision appropriateness, decision type and decision appropriateness assessment method.
Results: Of 152 included studies, 66 assessed decision appropriateness and five assessed perceived difficulty. While no studies assessed the relationship between perceived difficulty and appropriateness, one study objectively varied the difficulty of the scenarios and assessed the relationship between a measure of objective difficulty and appropriateness. Across 38 studies where calculations were possible, 62% of the decisions were appropriate as defined by the appropriateness standard used. Chi-squared tests identified statistically significant associations between decision appropriateness, decision type and decision appropriateness assessment method. Findings suggested a negative relationship between decision difficulty and appropriateness, while interventions may have the potential to reduce perceived difficulty.
Conclusions: Scenario-based research into GPs’ decisions rarely considers the relationship between perceived decision difficulty and decision appropriateness. The links between these decisional components require further investigation
ICF, An Immunodeficiency Syndrome: DNA Methyltransferase 3B Involvement, Chromosome Anomalies, and Gene Dysregulation
The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-κB, and TNFa signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2at1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs