31 research outputs found

    Exploring the (missed) connections between digital scholarship and faculty development: a conceptual analysis

    Get PDF
    Abstract The aim of this paper is to explore the relationship between two research topics: digital scholarship and faculty development. The former topic drives attention on academics' new practices in digital, open and networked contexts; the second is focused on the requirements and strategies to promote academics' professional learning and career advancement. The research question addressing this study is: are faculty development strategies hindered by the lack of a cohesive view in the research on digital scholarship? The main assumption guiding this research question is that clear conceptual frameworks and models of professional practice lead to effective faculty development strategies. Through a wide overview of the evolution of both digital scholarship and faculty development, followed by a conceptual analysis of the intersections between fields, the paper attempts to show the extent on which the situation in one area (digital scholarship) might encompass criticalities for the other (faculty development) in terms of research and practices. Furthermore, three scenarios based on the several perspectives of digital scholarship are built in order to explore the research question in depth. We conclude that at the current state of art the relationship between these two topics is weak. Moreover, the dialogue between digital scholarship and faculty development could put the basis to forge effective professional learning contexts and instruments, with the ultimate goal of supporting academics to become digital scholars towards a more open and democratic vision of scholarship

    A pilot study comparing two weight loss maintenance interventions among low-income, mid-life women

    Get PDF
    BACKGROUND: Despite high obesity prevalence rates, few low-income midlife women participate in weight loss maintenance trials. This pilot study aims to assess the effectiveness of two weight loss maintenance interventions in this under-represented population. METHODS: Low-income midlife women who completed a 16-week weight loss intervention and lost ≥ 8 lbs (3.6 kg) were eligible to enroll in one of two 12-month maintenance programs. The programs were similar in content and had the same number of total contacts, but were different in the contact modality (Phone + Face-to-Face vs. Face-to-Face Only). Two criteria were used to assess successful weight loss maintenance at 12 months: (1) retaining a loss of ≥ 5% of body weight from the start of the weight loss phase and (2) a change in body weight of < 3%, from the start to the end of the maintenance program. Outcome measures of changes in physiologic and psychosocial factors, and evaluations of process measures and program acceptability (measured at 12 months) are also reported. For categorical variables, likelihood ratio or Fisher’s Exact (for small samples) tests were used to evaluate statistically significant relationships; for continuous variables, t-tests or their equivalents were used to assess differences between means and also to identify correlates of weight loss maintenance. RESULTS: Overall, during the 12-month maintenance period, 41% (24/58) of participants maintained a loss of ≥ 5% of initial weight and 43% (25/58) had a <3% change in weight. None of the comparisons between the two maintenance programs were statistically significant. However, improvements in blood pressure and dietary behaviors remained significant at the end of the 12-month maintenance period for participants in both programs. Participant attendance and acceptability were high for both programs. CONCLUSIONS: The effectiveness of two pilot 12-month maintenance interventions provides support for further research in weight loss maintenance among high-risk, low-income women. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT0028830

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    Get PDF
    Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis

    Get PDF
    Inflammatory changes on the endothelium are responsible for leukocyte recruitment to plaques in atherosclerosis. Noninvasive assessment of treatment-effects on endothelial inflammation may be of use for managing medical therapy and developing novel therapies. We hypothesized that molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) with contrast enhanced ultrasound (CEU) could assess treatment effects on endothelial phenotype in early atherosclerosis.; Mice with atherosclerosis produced by gene deletion of the LDL-receptor and Apobec-1-editing protein were studied. At 12 weeks of age, mice received 8 weeks of regular chow or atorvastatin-enriched chow (10 mg/kg/day). At 20 weeks, CEU molecular imaging for aortic endothelial VCAM-1 expression was performed with VCAM-1-targeted (MB(VCAM)) and control microbubbles (MB(Ctr)). Aortic wall thickness was assessed with high frequency ultrasound. Histology, immunohistology and Western blot were used to assess plaque burden and VCAM-1 expression.; Plaque burden was reduced on histology, and VCAM-1 was reduced on Western blot by atorvastatin, which corresponded to less endothelial expression of VCAM-1 on immunohistology. High frequency ultrasound did not detect differences in aortic wall thickness between groups. In contrast, CEU molecular imaging demonstrated selective signal enhancement for MB(VCAM) in non-treated animals (MB(VCAM) 2±0.3 vs MB(Ctr) 0.7±0.2, p>0.01), but not in statin-treated animals (MB(VCAM) 0.8±0.2 vs MB(Ctr) 1.0±0.2, p = ns; p>0.01 for the effect of statin on MB(VCAM) signal).; Non-invasive CEU molecular imaging detects the effects of anti-inflammatory treatment on endothelial inflammation in early atherosclerosis. This easily accessible, low-cost technique may be useful in assessing treatment effects in preclinical research and in patients

    Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model

    No full text
    Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality; it results from loss-of-function mutations in the survival motor neuron 1 (SMN1) gene. Humans have a paralogue, SMN2, whose exon 7 is predominantly skipped, but the limited amount of functional, full-length SMN protein expressed from SMN2 cannot fully compensate for a lack of SMN1. SMN is important for the biogenesis of spliceosomal small nuclear ribonucleoprotein particles, but downstream splicing targets involved in pathogenesis remain elusive. There is no effective SMA treatment, but SMN restoration in spinal cord motor neurons is thought to be necessary and sufficient. Non-central nervous system (CNS) pathologies, including cardiovascular defects, were recently reported in severe SMA mouse models and patients, reflecting autonomic dysfunction or direct effects in cardiac tissues. Here we compared systemic versus CNS restoration of SMN in a severe mouse model. We used an antisense oligonucleotide (ASO), ASO-10-27, that effectively corrects SMN2 splicing and restores SMN expression in motor neurons after intracerebroventricular injection. Systemic administration of ASO-10-27 to neonates robustly rescued severe SMA mice, much more effectively than intracerebroventricular administration; subcutaneous injections extended the median lifespan by 25 fold. Furthermore, neonatal SMA mice had decreased hepatic Igfals expression, leading to a pronounced reduction in circulating insulin-like growth factor 1 (IGF1), and ASO-10-27 treatment restored IGF1 to normal levels. These results suggest that the liver is important in SMA pathogenesis, underscoring the importance of SMN in peripheral tissues, and demonstrate the efficacy of a promising drug candidate
    corecore