1,395 research outputs found

    Lifetime physical activity and risk of breast cancer

    Get PDF
    We conducted a case–control study of 394 women with breast cancer and 788 control women (91% response) to investigate the association of lifetime physical activity with mainly menopausal breast cancer risk. After controlling for potential confounders, the odds ratios (95% confidence intervals) for increasing quartiles of lifetime physical activity were 1.00 (referent), 0.91 (0.60–1.37), 0.91 (0.60–1.39), and 1.10 (0.73–1.67), respectively;P, trend = 0.47. We also separately examined physical activity at ages 12–18, 19–34, 35–49 and ≥50 years; no significant trends were observed in any age group. These data do not support a role of physical activity in preventing breast cancer. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Design principles for riboswitch function

    Get PDF
    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands

    ChromaSig: A Probabilistic Approach to Finding Common Chromatin Signatures in the Human Genome

    Get PDF
    Computational methods to identify functional genomic elements using genetic information have been very successful in determining gene structure and in identifying a handful of cis-regulatory elements. But the vast majority of regulatory elements have yet to be discovered, and it has become increasingly apparent that their discovery will not come from using genetic information alone. Recently, high-throughput technologies have enabled the creation of information-rich epigenetic maps, most notably for histone modifications. However, tools that search for functional elements using this epigenetic information have been lacking. Here, we describe an unsupervised learning method called ChromaSig to find, in an unbiased fashion, commonly occurring chromatin signatures in both tiling microarray and sequencing data. Applying this algorithm to nine chromatin marks across a 1% sampling of the human genome in HeLa cells, we recover eight clusters of distinct chromatin signatures, five of which correspond to known patterns associated with transcriptional promoters and enhancers. Interestingly, we observe that the distinct chromatin signatures found at enhancers mark distinct functional classes of enhancers in terms of transcription factor and coactivator binding. In addition, we identify three clusters of novel chromatin signatures that contain evolutionarily conserved sequences and potential cis-regulatory elements. Applying ChromaSig to a panel of 21 chromatin marks mapped genomewide by ChIP-Seq reveals 16 classes of genomic elements marked by distinct chromatin signatures. Interestingly, four classes containing enrichment for repressive histone modifications appear to be locally heterochromatic sites and are enriched in quickly evolving regions of the genome. The utility of this approach in uncovering novel, functionally significant genomic elements will aid future efforts of genome annotation via chromatin modifications

    The Na+/H+ Exchanger Controls Deoxycholic Acid-Induced Apoptosis by a H+-Activated, Na+-Dependent Ionic Shift in Esophageal Cells

    Get PDF
    Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI) tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA)-induced apoptosis, specifically the role of Na+/H+ exchanger (NHE) and Na+ influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A) to DCA (0.2 mM -0.5 mM) caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na+, subsequent loss of intracellular K+, an increase of Ca2+ and apoptosis. However, ethylisopropyl-amiloride (EIPA), a selective inhibitor of NHE, prevented Na+, K+ and Ca2+ changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na+ levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation). On the contrary, DCA-induced cell death was inhibited by medium with low a Na+ concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na+ influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis

    The roles of herbal remedies in survival and quality of life among long-term breast cancer survivors - results of a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few data exist on survival or health-related quality of life (QOL) related to herbal remedy use among long-term breast cancer survivors. The objective of this report is to examine whether herbal remedy use is associated with survival or the health-related QOL of these long-term breast cancer survivors.</p> <p>Methods</p> <p>In 1999-2000, we collected the information of herbal remedy use and QOL during a telephone interview with 371 Los Angeles Non-Hispanic/Hispanic white women who had survived more than 10 years after breast cancer diagnosis. QOL was measured using the Medical Outcomes Study Short Form-36 (SF-36) questionnaire. Patients were followed for mortality from the baseline interview through 2007. 299 surviving patients completed a second telephone interview on QOL in 2002-2004. We used multivariable Cox proportional hazards methods to estimate relative risks (RR) and 95% confidence intervals (CI) for mortality and applied multivariable linear regression models to compare average SF-36 change scores (follow-up - baseline) between herbal remedy users and non-users.</p> <p>Results</p> <p>Fifty-nine percent of participants were herbal remedy users at baseline. The most commonly used herbal remedies were echinacea, herbal teas, and ginko biloba. Herbal remedy use was associated with non-statistically significant increases in the risks for all-cause (44 deaths, RR = 1.28, 95% CI = 0.62-2.64) and breast cancer (33 deaths, RR = 1.78, 95% CI = 0.72-4.40) mortality. Both herbal remedy users' and non-users' mental component summary scores on the SF-36 increased similarly from the first survey to the second survey (<it>P </it>= 0.16), but herbal remedy users' physical component summary scores decreased more than those of non-users (-5.7 vs. -3.2, <it>P </it>= 0.02).</p> <p>Conclusions</p> <p>Our data provide some evidence that herbal remedy use is associated with poorer survival and a poorer physical component score for health-related QOL among women who have survived breast cancer for at least 10 years. These conclusions are based on exploratory analyses of data from a prospective study using two-sided statistical tests with no correction for multiple testing and are limited by few deaths for mortality analysis and lack of information on when herbal remedy use was initiated or duration of or reasons for use.</p

    Artificial graphene as a tunable Dirac material

    Full text link
    Artificial honeycomb lattices offer a tunable platform to study massless Dirac quasiparticles and their topological and correlated phases. Here we review recent progress in the design and fabrication of such synthetic structures focusing on nanopatterning of two-dimensional electron gases in semiconductors, molecule-by-molecule assembly by scanning probe methods, and optical trapping of ultracold atoms in crystals of light. We also discuss photonic crystals with Dirac cone dispersion and topologically protected edge states. We emphasize how the interplay between single-particle band structure engineering and cooperative effects leads to spectacular manifestations in tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference

    Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment

    Get PDF
    Background Breast cancer survivors often encounter physiological and psychological problems related to their diagnosis and treatment that can influence long-term prognosis. The aim of this research is to investigate the effects of a lifestyle intervention on body weight and psychological well-being in women recovering from breast cancer treatment, and to determine the relationship between changes in these variables and biomarkers associated with disease recurrence and survival. Methods/design Following ethical approval, a total of 100 patients will be randomly assigned to a lifestyle intervention (incorporating dietary energy restriction in conjunction with aerobic exercise training) or normal care control group. Patients randomised to the dietary and exercise intervention will be given individualised healthy eating dietary advice and written information and attend moderate intensity aerobic exercise sessions on three to five days per week for a period of 24 weeks. The aim of this strategy is to induce a steady weight loss of up to 0.5 Kg each week. In addition, the overall quality of the diet will be examined with a view to (i) reducing the dietary intake of fat to ~25% of the total calories, (ii) eating at least 5 portions of fruit and vegetables a day, (iii) increasing the intake of fibre and reducing refined carbohydrates, and (iv) taking moderate amounts of alcohol. Outcome measures will include body weight and body composition, psychological health status (stress and depression), cardiorespiratory fitness and quality of life. In addition, biomarkers associated with disease recurrence, including stress hormones, estrogen status, inflammatory markers and indices of innate and adaptive immune function will be monitored. Discussion This research will provide valuable information on the effectiveness of a practical, easily implemented lifestyle intervention for evoking positive effects on body weight and psychological well-being, two important factors that can influence long-term prognosis in breast cancer survivors. However, the added value of the study is that it will also evaluate the effects of the lifestyle intervention on a range of biomarkers associated with disease recurrence and survival. Considered together, the results should improve our understanding of the potential role that lifestyle-modifiable factors could play in saving or prolonging lives

    Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC), BDNF, and TrkB mRNA expression in the rat tongue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In rodents, dietary Na<sup>+ </sup>deprivation reduces gustatory responses of primary taste fibers and central taste neurons to lingual Na<sup>+ </sup>stimulation. However, in the rat taste bud cells Na<sup>+ </sup>deprivation increases the number of amiloride sensitive epithelial Na<sup>+ </sup>channels (ENaC), which are considered as the "receptor" of the Na<sup>+ </sup>component of salt taste. To explore the mechanisms, the expression of the three ENaC subunits (α, β and γ) in taste buds were observed from rats fed with diets containing either 0.03% (Na<sup>+ </sup>deprivation) or 1% (control) NaCl for 15 days, by using <it>in situ </it>hybridization and real-time quantitative RT-PCR (qRT-PCR). Since BDNF/TrkB signaling is involved in the neural innervation of taste buds, the effects of Na<sup>+ </sup>deprivation on BDNF and its receptor TrkB expression in the rat taste buds were also examined.</p> <p>Results</p> <p><it>In situ </it>hybridization analysis showed that all three ENaC subunit mRNAs were found in the rat fungiform taste buds and lingual epithelia, but in the vallate and foliate taste buds, only α ENaC mRNA was easily detected, while β and γ ENaC mRNAs were much less than those in the fungiform taste buds. Between control and low Na<sup>+ </sup>fed animals, the numbers of taste bud cells expressing α, β and γ ENaC subunits were not significantly different in the fungiform, vallate and foliate taste buds, respectively. Similarly, qRT-PCR also indicated that Na<sup>+ </sup>deprivation had no effect on any ENaC subunit expression in the three types of taste buds. However, Na<sup>+ </sup>deprivation reduced BDNF mRNA expression by 50% in the fungiform taste buds, but not in the vallate and foliate taste buds. The expression of TrkB was not different between control and Na<sup>+ </sup>deprived rats, irrespective of the taste papillae type.</p> <p>Conclusion</p> <p>The findings demonstrate that dietary Na<sup>+ </sup>deprivation does not change ENaC mRNA expression in rat taste buds, but reduces BDNF mRNA expression in the fungiform taste buds. Given the roles of BDNF in survival of cells and target innervation, our results suggest that dietary Na<sup>+ </sup>deprivation might lead to a loss of gustatory innervation in the mouse fungiform taste buds.</p

    Staging the city: London at the fin de siècle and the crisis of representation

    Get PDF
    Staging the city: London at the fin de siècle and the crisis of representatio
    • …
    corecore