423 research outputs found

    Entirely irrelevant distractors can capture and captivate attention

    Get PDF
    The question of whether a stimulus onset may capture attention when it is entirely irrelevant to the task and even in the absence of any attentional settings for abrupt onset or any dynamic changes has been highly controversial. In the present study, we designed a novel irrelevant capture task to address this question. Participants engaged in a continuous task making sequential forced choice (letter or digit) responses to each item in an alphanumeric matrix that remained on screen throughout many responses. This task therefore involved no attentional settings for onset or indeed any dynamic changes, yet the brief onset of an entirely irrelevant distractor (a cartoon picture) resulted in significant slowing of the two (Experiment 1) or three (Experiment 2) responses immediately following distractor appearance These findings provide a clear demonstration of attention being captured and captivated by a distractor that is entirely irrelevant to any attentional settings of the task

    Metabolic state alters economic decision making under risk in humans

    Get PDF
    Background: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans. Methodology/Principal Findings: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake), and circulating leptin levels (providing an assay of energy reserves). We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively. Conclusions/Significance: We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has significant implications for both real-world economic transactions and for aberrant decision-making in eating disorders and obesity

    Cosmology from LOFAR Two-metre Sky Survey data release 2: angular clustering of radio sources

    Get PDF
    Covering ∼ 5600 deg2 to rms sensitivities of ∼70−100 μJy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of 0.5 ≤ θ < 5◦, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of bC = 2.14+0.22 −0.20 (assuming constant bias) and bE(z = 0) = 1.79+0.15 −0.14 (for an evolving model, inversely proportional to the growth factor), corresponding to bE = 2.81+0.24 −0.22 at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to bC = 2.02+0.17 −0.16 and bE(z = 0) = 1.67+0.12 −0.12 when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates

    Co-designing Indices for Tailored Seasonal Climate Forecasts in Malawi

    Get PDF
    In central and southern Malawi, climate variability significantly impacts agricultural production and food availability owing to a high dependence on rain-fed maize production. Seasonal climate forecast information has the potential to inform farmers' agricultural planning, thereby improving preparedness to extreme events. In this paper we describe and evaluate an approach to co-designing and testing agro-climatic indices for use in seasonal forecasts that are tailored to farmer-defined decision-making needs in three districts of central and southern Malawi. Specifically, we aim to (a) identify critical maize specific agro-climatic indices by engaging key stakeholders and farmers; (b) compare and triangulate these indices with the historical climate record in study districts; and (c) analyze empirical relationships between seasonal total rainfall and maize specific indices in order to assess the potential for forecasting them at appropriate seasonal timescales. The identified agro-climatic indices include critical temperature/rainfall thresholds that are directly associated with phenological stages of maize growth with direct implications for maize yield and quality. While there are statistically significant relationships between observed wet season rainfall totals and several agro-climatic indices (e.g., heavy rainfall days and dry spell), the forecast skill of the UK Met Office's coupled initialized global seasonal forecasting system (GloSea5) over Malawi is currently low to provide confident predictions of total wet season rainfall and the agro-climatic indices correlated with it. We reflect on some of the opportunities and challenges associated with integrating farmers' information needs into a seasonal forecast process, through the use of agro-climatic indices

    The time course of exogenous and endogenous control of covert attention

    Get PDF
    Studies of eye-movements and manual response have established that rapid overt selection is largely exogenously driven toward salient stimuli, whereas slower selection is largely endogenously driven to relevant objects. We use the N2pc, an event-related potential index of covert attention, to demonstrate that this time course reflects an underlying pattern in the deployment of covert attention. We find that shifts of attention that occur soon after the onset of a visual search array are directed toward salient, task-irrelevant visual stimuli and are associated with slow responses to the target. In contrast, slower shifts are target-directed and are associated with fast responses. The time course of exogenous and endogenous control provides a framework in which some inconsistent results in the capture literature might be reconciled; capture may occur when attention is rapidly deployed

    Learned Value Magnifies Salience-Based Attentional Capture

    Get PDF
    Visual attention is captured by physically salient stimuli (termed salience-based attentional capture), and by otherwise task-irrelevant stimuli that contain goal-related features (termed contingent attentional capture). Recently, we reported that physically nonsalient stimuli associated with value through reward learning also capture attention involuntarily (Anderson, Laurent, & Yantis, PNAS, 2011). Although it is known that physical salience and goal-relatedness both influence attentional priority, it is unknown whether or how attentional capture by a salient stimulus is modulated by its associated value. Here we show that a physically salient, task-irrelevant distractor previously associated with a large reward slows visual search more than an equally salient distractor previously associated with a smaller reward. This magnification of salience-based attentional capture by learned value extinguishes over several hundred trials. These findings reveal a broad influence of learned value on involuntary attentional capture

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    Attentional Window Set by Expected Relevance of Environmental Signals

    Get PDF
    The existence of an attentional window—a limited region in visual space at which attention is directed—has been invoked to explain why sudden visual onsets may or may not capture overt or covert attention. Here, we test the hypothesis that observers voluntarily control the size of this attentional window to regulate whether or not environmental signals can capture attention. We have used a novel approach to test this: participants eye-movements were tracked while they performed a search task that required dynamic gaze-shifts. During the search task, abrupt onsets were presented that cued the target positions at different levels of congruency. The participant knew these levels. We determined oculomotor capture efficiency for onsets that appeared at different viewing eccentricities. From these, we could derive the participant's attentional window size as a function of onset congruency. We find that the window was small during the presentation of low-congruency onsets, but increased monotonically in size with an increase in the expected congruency of the onsets. This indicates that the attentional window is under voluntary control and is set according to the expected relevance of environmental signals for the observer's momentary behavioral goals. Moreover, our approach provides a new and exciting method to directly measure the size of the attentional window

    How Does Information Processing Speed Relate to the Attentional Blink?

    Get PDF
    Background When observers are asked to identify two targets in rapid sequence, they often suffer profound performance deficits for the second target, even when the spatial location of the targets is known. This attentional blink (AB) is usually attributed to the time required to process a previous target, implying that a link should exist between individual differences in information processing speed and the AB. Methodology/Principal Findings The present work investigated this question by examining the relationship between a rapid automatized naming task typically used to assess information-processing speed and the magnitude of the AB. The results indicated that faster processing actually resulted in a greater AB, but only when targets were presented amongst high similarity distractors. When target-distractor similarity was minimal, processing speed was unrelated to the AB. Conclusions/Significance Our findings indicate that information-processing speed is unrelated to target processing efficiency per se, but rather to individual differences in observers' ability to suppress distractors. This is consistent with evidence that individuals who are able to avoid distraction are more efficient at deploying temporal attention, but argues against a direct link between general processing speed and efficient information selection
    corecore