58 research outputs found

    Optimization of sensitivity, dose and spatial resolution in edge illumination X-ray phase-contrast imaging

    Get PDF
    Edge illumination (EI) X-ray phase-contrast imaging has great potential for applications in a wide range of research, industrial and clinical fields. The optimization of the EI experimental setup for a given application is therefore essential, in order to take full advantage of the capabilities of the technique. In this work, we analyze the dependence of the angular sensitivity, spatial resolution and dose delivered to the sample upon the various experimental parameters, and describe possible strategies to optimize them. The obtained results will be important for the design of future EI experimental setups, in particular enabling their tailoring to specific applications

    Laboratory-based edge-illumination phase-contrast imaging: Dark-field retrieval and high-resolution implementations

    Get PDF
    Edge illumination is an X-ray phase-contrast imaging technique capable of quantitative retrieval of phase and amplitude images. The retrieval of the ultra-small-angle X-ray scattering was recently developed and implemented with the area-imaging counterpart of an edge-illumination system, sometimes referred to as coded-aperture setup. This is an incoherent and achromatic technique, well suited for translation of the potential of X-ray phase contrast imaging into efficient laboratory-scale setups. We report on recent advances of these developments along two main directions. One relates to the expansion of the technique with respect to the data analysis and corrections that are required when non-ideal optical elements are used and optimized sampling strategies. The second is directed towards high-resolution and high-energy implementations. A laboratory-based prototype for high-energy X-ray phase-contrast microscopy was built and its performance was modelled and experimentally characterized

    Applications of a non-interferometric x-ray phase contrast imaging method with both synchrotron and conventional sources

    Get PDF
    We have developed a totally incoherent, non-interferometric x-ray phase contrast imaging (XPCI) method. This is based on the edge illumination (EI) concept developed at the ELETTRA synchrotron in Italy in the late ‘90s. The method was subsequently adapted to the divergent beam generated by a conventional source, by replicating it for every detector line through suitable masks. The method was modelled both with the simplified ray-tracing and with the more rigorous wave-optics approach, and in both cases excellent agreement with the experimental results was found. The wave-optics model enabled assessing the methods’ coherence requirements, showing that they are at least an order of magnitude more relaxed than in other methods, without this having negative consequences on the phase sensitivity. Our masks have large pitches (up to 50 times larger than in grating interferometry, for example), which allows for manufacturing through standard lithography, scalability, cost-effectiveness and easiness to align. When applied to a polychromatic and divergent beam generated by a conventional source, the method enables the detection of strong phase effects also with uncollimated, unapertured sources with focal spots of up to 100 mm, compatible with the state-of-the-art in mammography. When used at synchrotrons, it enables a contrast increase of orders of magnitude over other methods. Robust phase retrieval was proven for both coherent and incoherent sources, and additional advantages are compatibility with high x-ray energies and easy implementation of phase sensitivity in two directions simultaneously. This paper briefly summarizes these achievements and reviews some of the key results

    Monte Carlo model of a polychromatic laboratory based edge illumination x-ray phase contrast system

    Get PDF
    A Monte Carlo model of a polychromatic laboratory based (coded aperture) edge illumination xray phase contrast imaging system has been developed and validated against experimental data. The ability for the simulation framework to be used to model two-dimensional images is also shown. The Monte Carlo model has been developed using the McXtrace engine and is polychromatic, i.e., results are obtained through the use of the full x-ray spectrum rather than an effective energy. This type of simulation can in future be used to model imaging of objects with complex geometry, for system prototyping, as well as providing a first step towards the development of a simulation for modelling dose delivery as a part of translating the imaging technique for use in clinical environments

    Simultaneous implementation of low dose and high sensitivity capabilities in differential phase contrast and dark-field imaging with laboratory x-ray sources

    Get PDF
    We present a development of the laboratory-based implementation of edge-illumination (EI) x-ray phase contrast imaging (XPCI) that simultaneously enables low-dose and high sensitivity. Lab-based EI-XPCI simplifies the set-up with respect to other methods, as it only requires two optical elements, the large pitch of which relaxes the alignment requirements. Albeit in the past it was erroneously assumed that this would reduce the sensitivity, we demonstrate quantitatively that this is not the case. We discuss a system where the pre-sample mask open fraction is smaller than 50%, and a large fraction of the created beamlets hits the apertures in the detector mask. This ensures that the majority of photons traversing the sample are detected i.e. used for image formation, optimizing dose delivery. We show that the sensitivity depends on the dimension of the part of each beamlet hitting the detector apertures, optimized in the system design. We also show that the aperture pitch does not influence the sensitivity. Compared to previous implementations, we only reduced the beamlet fraction hitting the absorbing septa on the detector mask, not the one falling inside the apertures: the same number of x-rays per second is thus detected, i.e. the dose is reduced, but not at the expense of exposure time. We also present an extension of our phase-retrieval algorithm enabling the extraction of ultra-small-angle scattering by means of only one additional frame, with all three frames acquired within dose limits imposed by e.g. clinical mammography, and easy adaptation to lab-based phase-contrast x-ray microscopy implementations

    Edge illumination and coded-aperture X-ray phase-contrast imaging: Increased sensitivity at synchrotrons and lab-based translations into medicine, biology and materials science

    Get PDF
    The edge illumination principle was first proposed at Elettra (Italy) in the late nineties, as an alternative method for achieving high phase sensitivity with a very simple and flexible set-up, and has since been under continuous development in the radiation physics group at UCL. Edge illumination allows overcoming most of the limitations of other phase-contrast techniques, enabling their translation into a laboratory environment. It is relatively insensitive to mechanical and thermal instabilities and it can be adapted to the divergent and polychromatic beams provided by X-ray tubes. This method has been demonstrated to work efficiently with source sizes up to 100m, compatible with state-of-the-art mammography sources. Two full prototypes have been built and are operational at UCL. Recent activity focused on applications such as breast and cartilage imaging, homeland security and detection of defects in composite materials. New methods such as phase retrieval, tomosynthesis and computed tomography algorithms are currently being theoretically and experimentally investigated. These results strongly indicate the technique as an extremely powerful and versatile tool for X-ray imaging in a wide range of applications

    Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system

    Get PDF
    Here we present a general alignment algorithm for an edge illumination x-ray phase contrast imaging system, which is used with the laboratory systems developed at UCL. It has the flexibility to be used with all current mask designs, and could also be applied to future synchrotron based systems. The algorithm has proved to be robust experimentally, and can be used for the automatization of future commercial systems through automatic alignment and alignment correction

    A laboratory-based x-ray phase contrast imaging scanner with applications in biomedical and non-medical disciplines

    Get PDF
    X-ray phase contrast imaging (XPCi) provides a much higher visibility of low-absorbing details than conventional, attenuation-based radiography. This is due to the fact that image contrast is determined by the unit decrement of the real part of the complex refractive index of an object rather than by its imaginary part (the absorption coefficient), which can be up to 1000 times larger for energies in the X-ray regime. This finds applications in many areas, including medicine, biology, material testing, and homeland security. Until lately, XPCi has been restricted to synchrotron facilities due to its demanding coherence requirements on the radiation source. However, edge illumination XPCi, first developed by one of the authors at the ELETTRA Synchrotron in Italy, substantially relaxes these requirements and therefore provides options to overcome this problem. Our group has built a prototype scanner that adapts the edge-illumination concept to standard laboratory conditions and extends it to large fields of view. This is based on X-ray sources and detectors available off the shelf, and its use has led to impressive results in mammography, cartilage imaging, testing of composite materials and security inspection. This article presents the method and the scanner prototype, and reviews its applications in selected biomedical and non-medical disciplines

    Medicine, material science and security: the versatility of the coded-aperture approach

    Get PDF
    The principal limitation to the widespread deployment of X-ray phase imaging in a variety of applications is probably versatility. A versatile X-ray phase imaging system must be able to work with polychromatic and non-microfocus sources (for example, those currently used in medical and industrial applications), have physical dimensions sufficiently large to accommodate samples of interest, be insensitive to environmental disturbances (such as vibrations and temperature variations), require only simple system set-up and maintenance, and be able to perform quantitative imaging. The coded-aperture technique, based upon the edge illumination principle, satisfies each of these criteria. To date, we have applied the technique to mammography, materials science, small-animal imaging, non-destructive testing and security. In this paper, we outline the theory of coded-aperture phase imaging and show an example of how the technique may be applied to imaging samples with a practically important scale

    Effect of betaine supplementation on cycling sprint performance

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To examine the effect of betaine supplementation on cycling sprint performance.</p> <p>Methods</p> <p>Sixteen recreationally active subjects (7 females and 9 males) completed three sprint tests, each consisting of four 12 sec efforts against a resistance equal to 5.5% of body weight; efforts were separated by 2.5 min of cycling at zero resistance. Test one established baseline; test two and three were preceded by seven days of daily consumption of 591 ml of a carbohydrate-electrolyte beverage as a placebo or a carbohydrate-electrolyte beverage containing 0.42% betaine (approximately 2.5 grams of betaine a day); half the beverage was consumed in the morning and the other half in the afternoon. We used a double blind random order cross-over design; there was a 3 wk washout between trials two and three. Average and maximum peak and mean power were analyzed with one-way repeated measures ANOVA and, where indicated, a Student Newman-Keuls.</p> <p>Results</p> <p>Compared to baseline, betaine ingestion increased average peak power (6.4%; p < 0.001), maximum peak power (5.7%; p < 0.001), average mean power (5.4%; p = 0.004), and maximum mean power (4.4%; p = 0.004) for all subjects combined. Compared to placebo, betaine ingestion significantly increased average peak power (3.4%; p = 0.026), maximum peak power max (3.8%; p = 0.007), average mean power (3.3%; p = 0.034), and maximum mean power (3.5%; p = 0.011) for all subjects combined. There were no differences between the placebo and baseline trials.</p> <p>Conclusions</p> <p>One week of betaine ingestion improved cycling sprint power in recreationally active males and females.</p
    • …
    corecore