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 Abstract–Edge illumination (EI) X-ray phase-contrast imaging 

has great potential for applications in a wide range of research, 

industrial and clinical fields. The optimization of the EI 

experimental setup for a given application is therefore essential, 

in order to take full advantage of the capabilities of the 

technique. In this work, we analyze the dependence of the 

angular sensitivity, spatial resolution and dose delivered to the 

sample upon the various experimental parameters, and describe 

possible strategies to optimize them. The obtained results will be 

important for the design of future EI experimental setups, in 

particular enabling their tailoring to specific applications. 

I. INTRODUCTION 

VER the two last decades, several X-ray phase-contrast 

imaging techniques (XPCi) have been developed and 

applied [1-7]. The increasing interest in this subject of 

research is motivated by the fact that these techniques, which 

measure the refraction/diffraction of the beam caused by the 

sample instead of its attenuation, can provide highly enhanced 

image contrast compared to conventional methods. However, 

their application has until now, with just few exceptions, been 

limited to synchrotron radiation (SR) facilities, due to the high 

spatial and temporal coherence usually required. The practical 

implementation with conventional sources would radically 

expand the range of applications of XPCi, by allowing its 

widespread use in research laboratories, in the industry and, 

ultimately, in clinical diagnostics. 

The edge illumination (EI) XPCi method holds promise to 

solve most of the roadblocks encountered by other XPCi 

techniques. Originally developed as a synchrotron method [5], 

[8]-[9], it was later demonstrated to be efficiently applicable 

with laboratory sources [10]-[16]. This is primarily because EI 

is an intrinsically incoherent method, which does not exploit 

any wave interference/coherence effects, but only the purely 

geometrical refraction of the beam. In fact, its main principles 

can be explained by using simple ray-tracing optics, as shown 

in [17]. Therefore, EI is not affected by beam 

polychromaticity, and it provides intense signals even with 

sources featuring relatively large focal spots (up to at least 100 
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µm). Other advantages include robustness to mechanical 

vibrations, flexibility and scalability to large fields of view 

(required by many applications, notably in the biomedical 

field). Moreover, it was demonstrated that extremely high 

angular sensitivities of few nanoradians can be achieved using 

this method at SR facilities [9], and that sensitivities of EI 

laboratory setups are comparable to those obtained by other 

XPCi techniques, despite the simple setup [14]. 

In this work, we investigate the influence of various 

experimental parameters on the radiation dose delivered to the 

sample and on the two essential quantities describing the 

image quality: angular sensitivity and spatial resolution (the 

former determining the weakest refraction angle that can be 

detected in the image, while the latter determining the smallest 

detectable detail). 

II. THE EDGE ILLUMINATION PRINCIPLE 

The EI principle is based on illuminating the sample with a 

multitude of independent beamlets, created by means of an 

appropriate absorption mask (the so-called sample mask). The 

size of each beamlet ranges from few to tens of microns, 

depending on the particular implementation. A second mask 

(the detector mask), placed in contact with the detector, is 

used to analyze the radiation transmitted through the sample 

(see Fig. 1). It is slightly misaligned with respect to the first, 

so that a fraction of each beamlet is stopped by the mask, 

while the remaining part goes through the aperture and is 

counted by the detector. When a sample is introduced, each 

beamlet is not only reduced in intensity due to attenuation in 

the sample, but also deflected due to refraction. The latter 

effect can either increase or decrease the number of counts on 

the detector, according to the direction of refraction. This 

leads to the creation of black or white fringes in the image, 

highlighting the boundaries of the various object structures, 

where the refraction is highest. 

If the object transmission is denoted with ( )T y , and the 

refraction angle along the direction y orthogonal to the 

apertures with ( )θ∆
y

y  , the signal recorded by each detector 

pixel can be expressed as [9], [14]:   

( ) ( ) ( )( )2 θ= ⋅ − ⋅ ∆
e y

S y N T y C y z y      (1) 

where N is the number of photons in each beamlet, 
2z  is the 

distance between the sample and the second mask, 
e

y  is the 
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misalignment between the two masks and ( )e
C y  is the so-

called illumination curve. This expresses the fraction of 

photons transmitted through the second mask, as a function of 

the masks misalignment. ( )e
C y  is comprised between a value 

close to 1 (when the masks are perfectly aligned) and a value 

close to 0 (when they are completely misaligned, so that the 

beam produced by the first mask impinges on the absorbing 

part of the second). 

EI acquisitions are often performed using a 50% 

illumination condition, which is achieved when the edge of the 

detector slit is aligned with the centre of the sample slit (see 

Fig. 1). This leads to half of the beam being stopped, and half 

going through to the detector. The refraction-induced spatial 

shift of the beam, which is equal to ( )2
θ⋅ ∆

y
z y  at the detector 

plane, has the effect of changing the percentage of photons 

going through the second aperture, therefore producing image 

contrast. 

 

Fig. 1.  Scheme of the edge illumination setup (not to scale). Each slit is 

assumed to extend along the direction x orthogonal to the plane of drawing, in 

order to illuminate a line of detector pixels along x. 

 

The EI image contains, in the general case, a mixture of 

attenuation and refraction contrast, as seen from (1). Phase 

retrieval algorithms that enable disentangling and evaluating 

these two object quantities have been developed [9], [11], 

[14]. These are based on acquiring two images of the same 

sample at complementary mask positions 
,±e

y  (with the 

detector mask chopping either the lower or the upper part of 

the beam). The object transmission and refraction angle 

functions can then be calculated as [14]: 

( )
( )

( )
( )

1

,

+

+−

+

−

=
  

⋅ −   
   

e

S y
T y

S y
N C y R

S y

    (2) 
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( )

( )
1

2

1
θ

+−

−

 
∆ = −   

 
y

S y
y R

z S y
    (3) 

where 
+S  and 

−S  are the images acquired in the two 

complementary positions, and the auxiliary function R is 

defined as: 

( )
( )
( )

, 2

2

, 2

θ
θ

θ

+

−

− ∆
∆ ≡

− ∆

e y

y

e y

C y z
R z

C y z
    (4) 

The function R can be easily calculated from the 

experimental measure of the illumination curve, which is 

obtained by scanning one mask with respect to the other and 

recording the detector intensity at each point of the scan. 

III. SETUP OPTIMIZATION 

In order to take full advantage of the capabilities of EI for a 

given application, the optimization of the experimental setup 

is of central importance. In particular, two quantities defining 

the image quality need to be considered: the angular 

sensitivity and the spatial resolution. 

We define the angular sensitivity as the smallest refraction 

angle detectable by a given setup. By propagating the noise in 

the two input images 
+S  and 

−S  (assumed to be of purely 

stochastic origin) through (3), it can be found that the 

uncertainty on the calculated refraction angle is equal to [14]: 

( )
( )

( ) ( )2 2
α σ θ

ρ ρ
= ∆ =

 − + 

e

y

ref e ref e

C y

z TN y y d
    (5) 

where d is the size of each detector aperture and ρ
ref

 is the 

beam spatial distribution on the detector plane. The noise in 

the refraction image is a direct indicator of the smallest 

detectable refraction angle. Only angles that are larger than the 

background noise, in fact, can be effectively detected in the 

image.  

Equation (5) offers a simple and practical way to estimate 

the sensitivity of a given existing setup, or to guide the design 

of a new one. Apart from the trivial dependence on the 

number of photons (which determines the statistics and 

therefore the image noise), we see that the sensitivity depends 

on the setup geometry, and can therefore be optimized by 

varying the relevant experimental quantities. These include the 

propagation distance, the misalignment between the masks 

and the spatial distribution of the beam on the detector plane 

(which depends, in turn, on the setup distances and the size of 

the aperture of the first mask). 

In addition to maximizing the sensitivity, however, in 

several applications it is important to reduce the radiation dose 

delivered to the sample. This is the case for small animal 

imaging and for clinical applications, where the dose should 

be kept as low as possible and typically below pre-determined 

limits. The dose is proportional to the photon density, i.e. 

= ⋅
dose

D K N p , where p is the period of the sample mask and

dose
K  is a constant depending in a complex way on the photon 

energy and on the shape and composition of the sample. A 

useful figure-of-merit to describe the sensitivity of a given 

setup at a fixed dose is represented, in this case, by the 

quantity α ⋅ D , which is independent of the flux of photons 

on the sample [18], [19]. Note that, in other applications (such 

as industrial non-destructive testing, materials science, the 
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study of dynamical processes, etc.), it may be more important 

to minimize the acquisition time and therefore define a 

different figure-of-merit such as α ⋅ t . Note that the number 

of photons is related to the exposure time through the relation 

= ⋅ ⋅N f a t , where f is the photon flux on the sample mask, 

i.e. the number of photons per unit of length and unit of time. 

In the following examples, we will show that this can lead to 

different values for the optimal setup parameters, compared to 

an optimization with respect to the dose. 

Another essential quantity to consider is spatial resolution, 

which is also influenced by the setup geometry. We found in 

previous work that, under the geometrical approximation 

(which was demonstrated to be valid for laboratory setups 

based on non-microfocal sources [17], [20]), the point spread 

function for the refraction signal is equal to [17], [21]: 

( ) ( ) ( )2= − − − − ⋅ +  e e
PSF g y y M g y y M d M rect y a  

(6) 

where the function g indicates the source intensity 

distribution projected onto the detector plane, 

( )1 2 1= +M z z z  is the geometrical magnification, 
1

z  is the 

source-to-sample distance, and a is the size of the apertures in 

the first mask. ( )2+arect y a  is a rectangular function, equal 

to 1 in the range (0, a) and 0 elsewhere, which represents an 

aperture in the first mask. In the above equation, we have 

assumed that dithering (i.e. sub-pixel scanning of the sample 

along y, a procedure typically used to improve the spatial 

resolution [21],[22]) is performed, and that the scan step is 

small compared to the masks period. Therefore, the calculated 

PSF represents the maximum spatial resolution achievable by 

the imaging system (without dithering, in fact, the resolution 

would be simply equal to the period of the sample mask). Note 

that, if dithering is carried out, both the dose and the exposure 

time increase proportionally to the total number of dithering 

steps, i.e. the improved spatial resolution comes at the price of 

a larger dose to the sample and a longer time needed for the 

acquisition. 

Equation (6) can be used as the basis for an optimization of 

the parameters aimed at maximizing the spatial resolution. In 

the following example, we show that this leads to different 

optimal acquisition conditions compared to an optimization 

with respect to the angular sensitivity. We consider here the 

experimental parameters of one of the laboratory setups 

available at University College London. The source is a 

Rigaku M007 Mo, operated at 35 kV and featuring a source 

full width at half maximum (FWHM) of 70 µm. The detector 

is an ANRAD “SMAM” amorphous selenium flat panel, with 

a pixel size of 85 µm. The considered distances are 
1

z = 1.6 m 

and 
2z = 0.4 m, the detector aperture is d = 20 µm and a 50% 

illumination is considered. The width of the PSF, and the 

quantities α ⋅ D  and α ⋅ t , are calculated as a function of the 

aperture size a, which is left as the free parameter to be 

optimized (Fig. 2). 

 

Fig. 2. Optimization of sensitivity and spatial resolution as a function of 

the size of the first mask aperture. 

 

For large apertures, the achievable spatial resolution is only 

determined by the source blurring, while for small apertures it 

is limited by the aperture size itself. This is due to the fact that 

regions of the sample that are covered by the mask are not 

illuminated, and therefore cannot contribute to the image 

signal. The fact that the aperture size limits the extent of the 

PSF width (see (6) and Fig. 2) provides a very interesting 

possibility to achieve microscopic resolutions even with 

extended sources and large pixels. The quantity α ⋅ D  is also 

optimized at small values of the parameter a, as the sensitivity 

at a fixed dose to the sample is maximized in this case. 

However, the quantity α ⋅ t  has a very different trend, having 

a minimum at about 16.8 µm. Large mask apertures, in fact, 

lead to a wider beam distribution onto the detector (thus 

reducing the sensitivity), while small apertures reduce the 

photon flux (thus increasing the image noise at a fixed time, or 

equivalently the time needed to achieve a given signal-to-

noise ratio). Note that α ⋅ D  is not so sensitive to the latter 

effect, because this is also accompanied by a reduction of the 

dose to the sample. We have thus shown that trade-offs exist 

between minimization of dose and of time, and between 

sensitivity and achievable spatial resolution, which means that 

improving one of the two inevitably leads to a compromise on 

the other one. 

The second example deals with the important practical case 

where the sensitivity needs to optimized with respect to masks 

misalignment. Here, the sample aperture is assumed to be a = 

12 µm (like in our experimental setup), while the other 

parameters are the same as in the first example. The quantity 
α ⋅ D  is reported in Fig. 3, as a function of the parameter e

y . 

Contrary to the previous example, α ⋅ D  and α ⋅ t  share the 

same value for the optimal misalignment 
e

y . In fact, 

= ⋅ ⋅
dose

D t f a p K  does not depend on this parameter, thus 

the two curves only differ by a constant factor. 



 

 

Fig. 3.  Optimization of the sensitivity as a function of the misalignment 

between the two masks. 

 

It can be seen from Fig. 3 that α ⋅ D  is minimum 

(corresponding to highest sensitivity for a given radiation dose 

to the sample) at 
e

y  = 15.4 µm. A smaller misalignment, 

corresponding to a higher illumination condition, would lead 

to smaller contrast (i.e. lower relative change in signal with 

the sample in the beam compared to the reference case without 

sample). However, larger misalignment would lead to a lower 

number of photons being detected, thus increasing the image 

noise. 

IV. CONCLUSIONS 

In this work, we have derived analytical expressions 

relating the achievable angular sensitivity and spatial 

resolution of an EI imaging system to the various experimental 

parameters. These expressions enable the optimization of the 

experimental setup on the basis of the type of samples that 

have to be imaged, the structures to be visualized, their size, 

etc. and constraints such as radiation dose and acquisition 

time. 

We have suggested and discussed possible optimization 

strategies. In particular, we showed that a trade-off exists, like 

in other XPCi techniques, between spatial resolution and 

angular sensitivity. Moreover, the optimization of sensitivity 

with respect to either the acquisition time or the radiation dose 

to the sample provides in general different values for the 

optimal parameters. We believe that the results of this analysis 

will be an extremely useful guide for the design of future 

experimental setups based on the EI principle. 
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