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The principal limitation to the widespread deployment
of X-ray phase imaging in a variety of applications is
probably versatility. A versatile X-ray phase imaging
system must be able to work with polychromatic and
non-microfocus sources (for example, those currently
used in medical and industrial applications), have
physical dimensions sufficiently large to accommodate
samples of interest, be insensitive to environmental
disturbances (such as vibrations and temperature
variations), require only simple system set-up and
maintenance, and be able to perform quantitative
imaging. The coded-aperture technique, based upon
the edge illumination principle, satisfies each of these
criteria. To date, we have applied the technique
to mammography, materials science, small-animal
imaging, non-destructive testing and security. In this
paper, we outline the theory of coded-aperture phase
imaging and show an example of how the technique
may be applied to imaging samples with a practically
important scale.

1. Introduction
Phase contrast imaging has been performed routinely
using visible light since well before Zernike received
the Nobel prize for his invention of the phase contrast

2014 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and
source are credited.
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microscope in 1953 [1]. Imaging with visible light has led X-ray imaging in the development of
phase imaging techniques principally due to the faster development of technology, which is, in
general, more difficult in the case of X-ray imaging. As technology and methods mature, it is
reasonable to assume that X-ray phase contrast imaging (XPCI) will have a significant impact
upon a great number of applications, just as it has on the visible regime.

Quantitative XPCI techniques are particularly important as they are necessary for performing
computed tomography. Existing quantitative XPCI techniques fall into three general categories.
One category is that of in-line holography in which radiation, perturbed by the sample, interferes
with radiation directly incident upon the detector [2,3]. A source of highly spatially coherent
radiation is required, thus necessitating the use of a microfocus or synchrotron source. Algorithms
have been developed for determining the phase of a sample from its hologram for weakly
absorbing [4–6], pure phase [7,8] and homogeneous objects [7,9]. The principal limitation of this
technique is that a synchrotron source is required to acquire images with a sufficiently short
exposure time so as to be compatible with most applications.

Another category is analyser-based imaging (ABI), which makes use of the rocking curve
of an analyser crystal to develop contrast [10]. A number of algorithms have been developed
that enable phase and absorption information to be separated [11–17]. This technique requires a
highly collimated beam of high spectral purity to be incident upon the sample, thus limiting it
to synchrotrons or monochromated laboratory sources [10,18], which appears to be this method’s
principal limitation.

The category of techniques that currently appears to possess the greatest potential for
widespread application is that of grating interferometry. This technique employs two or three
gratings, depending on the source employed, and uses the phenomenon of Talbot self-imaging.
In this technique, sample differential phase and absorption information is encoded in the relative
shift and mean value of fringes incident upon a detector. This technique has been implemented
using synchrotron radiation [19–21] as well as laboratory sources [22,23], in which case a source
grating is required to aperture the source, thus resulting in an array of coherent, but mutually
incoherent, secondary sources.

The coded-aperture technique presented in this paper fits somewhere between the ABI and
grating interferometry categories. On first inspection, the method appears to share similarities
with the grating method owing to the presence of two sets of apertures. However, the method
does not make use of the Talbot effect, which relaxes the coherence requirements of the source
relative to the grating technique [24]. The coded-aperture method is, however, based upon the
edge illumination principle [25], which was developed as a synchrotron method analogous
to ABI. The edge illumination principle shows how strong differential phase contrast may be
achieved by illumination of a sharp boundary between two pixels and forms the basis of a recent
quantitative technique based upon the coded-aperture method [26].

As mentioned earlier, the coded-aperture technique is built on the edge illumination principle
first demonstrated by Olivo et al. [25]. The first coded-aperture XPCI images acquired with
a conventional source were acquired in 2007 [27,28]. This led to a number of applications
being investigated, including homeland security [29–31], mammography [32], high-sensitivity
quantitative imaging [26] and small-animal imaging [33].

Figure 1 shows a schematic diagram that illustrates the edge illumination principle as
deployed using a synchrotron source. The diverging beam depicted is perhaps slightly
exaggerated, as the source to sample distance, zso, may be very substantial depending on the
beamline; however, there will always be a degree of beam divergence. The system may be
assumed to extend out of the page, in which case an array of detector pixels would be employed
to enable a profile to be obtained with each acquisition. The sample may be scanned in the vertical
direction to build up an image. When the sample is in the vicinity of the axis denoted by a dashed
line in figure 1, the refraction of photons either into or out of the sensitive region of the detector
will result in contrast due to a phase gradient in the vertical direction. Experiments have shown
that very strong phase contrast can be achieved using this set-up [25,34]. An important point to
note is that W can be increased without degrading spatial resolution. Increasing W causes more
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Figure 1. Schematic diagram showing the edge illumination principle. A set of slits is used to form a beam of widthW, which is
incident upon the sample. At least part of the beam is incident upon an absorbing edge positioned in front of the detector.�I
is the physical width of the beam that overlaps the sensitive part of the detector; zso is the distance between the beam-forming
slit and the source, which, in the case of a synchrotron, can bemanymetres; zod is the distance between the beam-forming slits
and the detector.
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Figure 2. Schematic diagram of the coded-aperture system (left). An aperture A1 is used to form a series of beams, which
are incident upon absorbing edges provided by the detector aperture A2. The width of each beam after A1 isW, but the beams
diverge to awidth ofMW at A2, whereM= (zso + zod)/zso. A flat panel detectorwith pixel width P is employed,which defines
the periodicity of the apertures. The displacement between the centre of each pixel and the centre of each beam,�P, is an
importantquantity,which strongly affects the imagingproperties of the system.�P is used to control�I, a parameter common
to both the coded-aperture and edge illumination systems. A magnified view of part of the coded-aperture system revealing
key parameters (top right). The coordinate system employed throughout this paper (bottom right).

background photons to be detected, so any refracted, i.e. signal-forming, photons will cause a
perturbation against a higher background. In this sense, increasing W leads to reduced contrast
in the image, and so the maximum allowable value for W largely depends on the number of
perturbed photons relative to the noise of the system. A reason for having a large W is that it
allows the Fresnel number of the diffracting slit at the detector, W2/(zodλ), to be much greater
than unity for a wavelength λ. This means that the system is well described by geometrical optics.
This is by no means essential but it enables the forward, and therefore inverse, problems to be
described by analytic formulae. This is also a compelling reason for employing the Talbot effect
in grating interferometry.

Figure 2 shows a schematic diagram that illustrates the coded-aperture system. The coded-
aperture system is closely linked to the edge illumination principle, as is evident from the
diagram. The width and separation of the beams are limited by the periodicity of the flat panel
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detector. Off-the-shelf detectors are generally employed to make the system as widely applicable
as possible. In particular, we currently employ two detectors in our laboratory, an ANRAD a-Se
(SMAM) featuring a pixel size of 85 µm and HAMAMATSU (C9732DK passive pixel CMOS flat
panel with directly deposited structured CsI) with a pixel size of 50 µm. The total system length,
zso + zod, is generally of the order of 2 m, based on simulations and experiments [32], but a shorter
system length is possible and is currently being tested experimentally. This system, too, may be
assumed to extend out of the page; however, unlike in the case of edge illumination, sample
scanning is not required owing to the array of beams. However, high-resolution images may be
obtained by scanning of the sample, by a subpixel amount, if desired.

2. Mathematical analysis of coded-aperture technique and resulting versatility
We provide here a simplified mathematical description of the coded-aperture system. For this
purpose, we use the arrangement in figure 3, which contains a simple, representative, wedge
object. For simplicity, we consider a system that is uniform in the y direction of figure 3,
although the extension to a two-dimensional system is straightforward. We assume initially a
monochromatic point source located a distance zso from the aperture A1, which, however, may
be located off axis at position x̄. As is customary, we describe a sample by a transmission function
whereby the perturbation to a wave front, at an exit surface very close to the object, is described
by a complex function [35], which we denote T(ξ ) = exp(−iφ(ξ ) − μ(ξ )), where φ and μ, both real
valued, are defined as

φ(ξ ) = k
∫
O

δ(ξ , z) dz and μ(ξ ) = k
∫
O

β(ξ , z) dz, (2.1)

O is the extent of the object and k is the wave number. Then, by applying the paraxial
approximation to the Fresnel–Kirchhoff diffraction integral, the irradiance of the field a distance
zod from A1 may be found as [36]

I(x, x̄, φ′) ≈ |U0|2
λzsozod(zso + zod)

exp(−μ(0)) (2.2)

×
∫W/2

−W/2
exp

(
ikξ2 zso + zod

2zsozod
− ik

ξ

zod

(
x + zod

zso
x̄ + zod

k
φ′

))
dξ , (2.3)

where φ has been approximated by a first-order Taylor series expansion about ξ = 0, φ′ represents
the gradient of φ in the ξ direction at ξ = 0, μ has been assumed to be constant within the beam
and the point source is assumed to radiate a spherical wave of the form U0 exp(ikr)/r at a distance
r from the source. This expression is, however, only a partial result because the irradiance is
integrated over a region defined by the aperture A2 and the effect of an extended source must
also be incorporated. Suppose, then, that the source focal spot may be described by a function
σ (x̄), often assumed to be Gaussian in the literature, and that the combined effect of pixel and
aperture leads to a sensitivity function Q(x, �P), where �P is incorporated to enable A2 to be
shifted. Then, the pixel signal for a particular position of A2, after interchanging the order of
integration, is given by

S(�P, φ′) =
∫∞

−∞
I(x, 0, φ′)K(x, �P) dx, (2.4)

where

K(x, �P) = Q(x, �P) ∗
[

zso

zodσ

(
zso

zodx

)]
, (2.5)
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Figure 3. Diagram of a unit of the coded-aperture system or, equivalently, of the edge illumination principle, defining the
mathematical quantities used in this paper. Note that the refraction angles have been exaggerated for clarity.

and ∗ is the convolution operator and K(x, �P) is introduced here as the effective pixel sensitivity
function. In the case of a point source and a perfectly absorbing detector aperture, for example,
K(x, �P) would take the form (figure 2)

K(x, �P) =
⎧⎨
⎩

1
−MW

2
+ �P < x <

MW
2

+ �P,

0 otherwise.
(2.6)

However, this formalism allows parameters, such as detector aperture width and source focal
spot size, to be accounted for. The general strategy employed in both grating interferometry and
the coded-aperture technique is to develop a means of deriving φ′ from two or more values of
S(�P, φ′) for different values of �P. In the case of the coded-aperture technique, two values are
obtained for two equal and opposite values of �P, which results in the inversion formula [26]

φ′ ≈
√

π

2
S(−MW/2, φ′) − S(MW/2, φ′)
S(−MW/2, φ′) + S(MW/2, φ′)

σd

zod
(2.7)

where σd = FWHMd/(2
√

log(2)) and FWHMd is the full width at half-maximum of the beams
projected onto A2. This formalism demonstrates the versatility of the coded-aperture technique. In
particular, we note that, within very accommodating limits, the source size, aperture dimensions
and system layout may be varied and quantitative phase imaging may still be performed. This
allows the system to be adapted to very many applications.

3. Ramifications of versatility
The versatility of the coded-aperture technique has been explained from a mathematical view-
point in §2 and from an intuitive point of view in §1. This versatility results in the coded-aperture
technique possessing a number of practical advantages over other techniques. One important
advantage of the coded-aperture technique that seems not to be generally understood is that
the sensitivity and spatial resolution are not determined by the periodicity or fill factor of the
pre-sample aperture, A1. This is demonstrated by comparing recent experiments on porcine
cartilage [37], using a grating interferometer, and on murine cartilage [33], using a coded-
aperture system. In particular, the contrast for the two configurations can be directly compared
from Marenzana et al.’s [33] fig. 2c (murine cartilage in water) and Stutman et al.’s [37] fig. 9d
(porcine cartilage in water), which both demonstrate a phase contrast modulation of the order
of approximately 5% at the interface between cartilage and water. In the case of the grating
interferometer experiments, it was necessary to place the analyser grating at the third Talbot
distance, resulting in an interferometer of length 2.5 m with 1.25 m between sample and detector,
in order to be sensitive to the small refraction angles induced by the porcine cartilage in water. The
source, analyser and phase gratings each had a periodicity of 10 µm, with the former having a 50%
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duty cycle. Further, the authors of this work explain that a significantly reduced contrast would
be achieved at the fifth Talbot distance, thus effectively placing a limit on the system’s sensitivity
to small refraction angles. In contrast, the coded-aperture system used a distance of 2 m between
the source and the detector and only 0.4 m between sample and detector, while employing a pre-
sample aperture with periodicity of 66.8 µm and opening of width 12 µm, yet achieved contrast
comparable to that of the grating interferometer.

Other advantages of the coded-aperture system are that, by accommodating a range of
aperture periodicities, a flat panel detector compatible with industrial or medical applications
is able to be used and that standard laboratory sources may be employed without needing to
aperture the source. This means that the only portion of source flux not used in image formation is
that absorbed by the apertures. We note that the system described above uses approximately up to
18% of the available source flux for imaging. This is the amount of flux incident upon the sample;
the amount used in image formation depends on how the pre-sample and detector apertures are
aligned. This system was designed specifically to perform low-dose mammography [38], which
is one reason why only 18% of source flux is incident upon the sample. Other configurations
of the system, however, demonstrate how apertures can be used that transmit 50% of incident
flux [27,28,39]. The flux used in image formation by these configurations can thus vary between
nearing zero (dark-field configuration), 25% (commonly used XPCI configuration) and nearing
50% (bright-field configuration). This has important ramifications in reducing the cost of systems
and ensuring that the exposure time is sufficiently low to be compatible with the majority of
applications. The relatively large periodicity and size of the transmitting regions of the apertures
represent a further strength of the method in that the apertures are able to be fabricated routinely
and with physical dimensions large enough to accommodate mainstream medical and industrial
applications. This also has important ramifications for reducing the system cost.

We have not discussed at length in this paper the effect of a polychromatic source. However,
this represents another strength of this method, as, because it is not interferometric, it can be
used with sources having a very broad spectrum without experiencing image degradation due
to lack of temporal coherence [24]. Of course, sensitivity to phase gradients at high photon
energies may be lost as the apertures become transparent, but this is common to all techniques
employing apertures or gratings. However, it has been shown that the coded-aperture technique
still performs well at high photon energies [29].

A final strength that we note is that the system is strongly immune to vibrations as may be
experienced in, for example, a hospital due to foot traffic. A manuscript is currently in preparation
that demonstrates the robustness of the system to vibrations induced by people walking in close
proximity to the instrument.

4. Examples
As the first example, we show a quantitative result obtained using synchrotron radiation at
the Elettra synchrotron radiation facility in operation in Trieste, Italy. The experiment is fully
described in a recent publication [40] and the result we present here differs in that a photon
energy of 25 keV was employed. It is interesting to note that identical systems were used to
obtain accurate quantitative results at both 20 and 25 keV photon energies. The experimental
system used was similar to that of figure 1 although images were taken for both positive and
negative values of �P. Figure 4 contains an image of the differential phase gradient of a poly
(ether ether ketone) (PEEK) fibre with a nominal diameter of 450 µm. A single scan line is plotted
along with the analytic comparison, which confirms the accuracy of the technique. PEEK has
values of δ = 4.58 × 10−7 and β = 1.51 × 10−10 [41].

As another example, we have selected a sample image of a marker pen, which demonstrates
the high sensitivity and spatial resolution that may be obtained by using the coded-aperture
system. Figure 5 contains retrieved absorption and phase images of the marker pen. The retrieved
absorption image is analogous to a conventional absorption radiograph, while the phase image
has a grey level in proportion with the refraction angle induced by the sample. The images
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Figure 4. (a) Image of φ′ for a PEEK fibre of nominal diameter 450µm and (b) a profile plot of the differential phase. The
experiment profile plot (black) is extracted from the location indicated by the line in the phase image. The analytic value of
the differential phase profile is denoted by the grey line. The differential phase imagewas acquired using synchrotron radiation
under the conditions described in this section.
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Figure 5. (a) Absorption and (b) refraction images of a marker pen acquired using a coded-aperture XPCI system.

were obtained using a coded-aperture system such as that illustrated in figure 2 with total
system length, zso + zod, of 2 m, with zso = 1.6 m and zod = 0.4 m. The pre-sample aperture, A1,
had a period of 66.8 µm with an opening of 12 µm, while the detector aperture, A2, had a
period of 83.5 µm and an opening of 20 µm. A Rigaku 007HF X-ray tube generator operated at

 on July 1, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


8

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130029

.........................................................

35 kVp/25 mA with a rotating Mo target was used. Images were acquired with an ANRAD a-Se
(SMAM) flat panel detector featuring a pixel size of 85 µm. Images were taken at a total of four
subpixel image positions to increase the resolution of the images. Each such image was acquired
using an acquisition time of 70 s, meaning that the images in figure 5 took a total of 560 s to acquire,
because images are required to be taken for both positive and negative displacements of the
detector aperture.

The phase image in figure 5 contains many details that are easily visible in the phase image but
not in the absorption image. Some of these details have been surrounded by grey boxes. It is also
interesting to note that the texture of the porous tip is clearly depicted in the phase image. The
only obvious region where the phase image shows less detail than the absorption image is the
region annotated with an arrow. A vertical band is seen in the absorption image, which is missing
in the phase image. This is because this band of material is very close to being perpendicular to
the direction in which the system is sensitive to phase gradients. Detail can, however, be seen
at the top of this band where the material boundary bends.
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