45 research outputs found

    Measurement of the 13 C isotopic signature of methane emissions from Northern European wetlands

    Get PDF
    Isotopic data provide powerful constraints on regional and global methane emissions and their source profiles. However, inverse modeling of spatially-resolved methane flux is currently constrained by a lack of information on the variability of source isotopic signatures. In this study, isotopic signatures of emissions in the Fennoscandian Arctic have been determined in chambers over wetland, in the air 0.3 to 3 m above the wetland surface and by aircraft sampling from 100 m above wetlands up to the stratosphere. Overall the methane flux to atmosphere has a coherent δ13C isotopic signature of -71 ± 1‰, measured in situ on the ground in wetlands. This is in close agreement with δ13C isotopic signatures of local and regional methane increments measured by aircraft campaigns flying through air masses containing elevated methane mole fractions. In contrast results from wetlands in Canadian boreal forest further south gave isotopic signatures of -67 ± 1 ‰. Wetland emissions dominate the local methane source measured over the European Arctic in summer. Chamber measurements demonstrate a highly variably methane flux and isotopic signature, but the results from air sampling within wetland areas show that emissions mix rapidly immediately above the wetland surface and methane emissions reaching the wider atmosphere do indeed have strongly coherent C isotope signatures. The study suggests that for boreal wetlands (>60°N) global and regional modeling can use an isotopic signature of -71‰ to apportion sources more accurately, but there is much need for further measurements over other wetlands regions to verify this.UK Natural Environment Research Council (NERC). Grant Numbers: NE/I028874/1, NE/I014683/1, NE/F020937/1 European Community's Seventh Framework Programme. Grant Number: FP7/2007‐2013 InGOS. Grant Number: 28427

    Vegetation Type Dominates the Spatial Variability in CH<inf>4</inf> Emissions Across Multiple Arctic Tundra Landscapes

    Get PDF
    Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems

    Shedding light on plant litter decomposition: Advances, implications and new directions in understanding the role of photodegradation

    Get PDF
    Litter decomposition contributes to one of the largest fluxes of carbon (C) in the terrestrial biosphere and is a primary control on nutrient cycling. The inability of models using climate and litter chemistry to predict decomposition in dry environments has stimulated investigation of non-traditional drivers of decomposition, including photodegradation, the abiotic decomposition of organic matter via exposure to solar radiation. Recent work in this developing field shows that photodegradation may substantially influence terrestrial C fluxes, including abiotic production of carbon dioxide, carbon monoxide and methane, especially in arid and semi-arid regions. Research has also produced contradictory results regarding controls on photodegradation. Here we summarize the state of knowledge about the role of photodegradation in litter decomposition and C cycling and investigate drivers of photodegradation across experiments using a meta-analysis. Overall, increasing litter exposure to solar radiation increased mass loss by 23% with large variation in photodegradation rates among and within ecosystems. This variation was tied to both litter and environmental characteristics. Photodegradation increased with litter C to nitrogen (N) ratio, but not with lignin content, suggesting that we do not yet fully understand the underlying mechanisms. Photodegradation also increased with factors that increased solar radiation exposure (latitude and litter area to mass ratio) and decreased with mean annual precipitation. The impact of photodegradation on C (and potentially N) cycling fundamentally reshapes our thinking of decomposition as a solely biological process and requires that we define the mechanisms driving photodegradation before we can accurately represent photodegradation in global C and N models. © 2012 US Government

    Changes to dryland rainfall result in rapid moss mortality and altered soil fertility

    No full text
    Arid and semi-arid ecosystems cover ~40% of Earth’s terrestrial surface1, but we know little about how climate change will affect these widespread landscapes. Like many drylands, the Colorado Plateau in southwestern United States is predicted to experience elevated temperatures and alterations to the timing and amount of annual precipitation2, 3, 4. We used a factorial warming and supplemental rainfall experiment on the Colorado Plateau to show that altered precipitation resulted in pronounced mortality of the widespread moss Syntrichia caninervis. Increased frequency of 1.2 mm summer rainfall events reduced moss cover from ~25% of total surface cover to \u3c2% after only one growing season, whereas increased temperature had no effect. Laboratory measurements identified a physiological mechanism behind the mortality: small precipitation events caused a negative moss carbon balance, whereas larger events maintained net carbon uptake. Multiple metrics of nitrogen cycling were notably different with moss mortality and had significant implications for soil fertility. Mosses are important members in many dryland ecosystems and the community changes observed here reveal how subtle modifications to climate can affect ecosystem structure and function on unexpectedly short timescales. Moreover, mortality resulted from increased precipitation through smaller, more frequent events, underscoring the importance of precipitation event size and timing, and highlighting our inadequate understanding of relationships between climate and ecosystem function in drylands
    corecore