643 research outputs found

    Identification of Novel Small Organic Compounds with Diverse Structures for the Induction of Epstein-Barr Virus (EBV) Lytic Cycle in EBV-Positive Epithelial Malignancies

    Get PDF
    Phorbol esters, which are protein kinase C (PKC) activators, and histone deacetylase (HDAC) inhibitors, which cause enhanced acetylation of cellular proteins, are the main classes of chemical inducers of Epstein-Barr virus (EBV) lytic cycle in latently EBV-infected cells acting through the PKC pathway. Chemical inducers which induce EBV lytic cycle through alternative cellular pathways may aid in defining the mechanisms leading to lytic cycle reactivation and improve cells’ responsiveness towards lytic induction. We performed a phenotypic screening on a chemical library of 50,240 novel small organic compounds to identify novel class(es) of strong inducer(s) of EBV lytic cycle in gastric carcinoma (GC) and nasopharyngeal carcinoma (NPC) cells. Five hit compounds were selected after three successive rounds of increasingly stringent screening. All five compounds are structurally diverse from each other and distinct from phorbol esters or HDAC inhibitors. They neither cause hyperacetylation of histone proteins nor significant PKC activation at their working concentrations, suggesting that their biological mode of action are distinct from that of the known chemical inducers. Two of the five compounds with rapid lytic-inducing action were further studied for their mechanisms of induction of EBV lytic cycle. Unlike HDAC inhibitors, lytic induction by both compounds was not inhibited by rottlerin, a specific inhibitor of PKCδ. Interestingly, both compounds could cooperate with HDAC inhibitors to enhance EBV lytic cycle induction in EBV-positive epithelial cancer cells, paving way for the development of strategies to increase cells’ responsiveness towards lytic reactivation. One of the two compounds bears structural resemblance to iron chelators and the other strongly activates the MAPK pathways. These structurally diverse novel organic compounds may represent potential new classes of chemicals that can be used to investigate any alternative mechanism(s) leading to EBV lytic cycle reactivation from latency.published_or_final_versio

    Reform of copyright law in Hong Kong: time to redraw the balance

    Get PDF
    This article reviews the current permitted acts under the Copyright Ordinance and their implications for Hong Kong. The discussion focuses on those permitted acts having a direct impact on two sectors the Hong Kong Government is most concerned with: education and the software industry. It shows that because of the limitations of the permitted acts, the Copyright Ordinance has failed to strike the right balance between the conflicting interests in these two sectors; rather, it favours the copyright owners. The article traces the cause of the imbalance to three main deficiencies in the Copyright Ordinance and proposes a solution to strike the right balance.published_or_final_versio

    Inhibition of class I histone deacetylases by romidepsin potently induces Epstein-Barr virus lytic cycle and mediates enhanced cell death with ganciclovir

    Get PDF
    Pan-histone deacetylase (HDAC) inhibitors, which inhibit 11 HDAC isoforms, are widely used to induce Epstein-Barr virus (EBV) lytic cycle in EBV-associated cancers in vitro and in clinical trials. Here, we hypothesized that inhibition of one or several specific HDAC isoforms by selective HDAC inhibitors could potently induce EBV lytic cycle in EBV-associated malignancies such as nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). We found that inhibition of class I HDACs, particularly HDAC-1, -2 and -3, was sufficient to induce EBV lytic cycle in NPC and GC cells in vitro and in vivo. Among a panel of selective HDAC inhibitors, the FDA-approved HDAC inhibitor romidepsin was found to be the most potent lytic inducer, which could activate EBV lytic cycle at ∼0.5 to 5 nM (versus ∼800 nM achievable concentration in patients' plasma) in more than 75% of cells. Upregulation of p21WAF1 , which is negatively regulated by class I HDACs, was observed before the induction of EBV lytic cycle. The upregulation of p21WAF1 and induction of lytic cycle were abrogated by a specific inhibitor of PKC-δ but not the inhibitors of PI3K, MEK, p38 MAPK, JNK or ATM pathways. Interestingly, inhibition of HDAC-1, -2 and -3 by romidepsin or shRNA knockdown could confer susceptibility of EBV-positive epithelial cells to the treatment with ganciclovir (GCV). In conclusion, we demonstrated that inhibition of class I HDACs by romidepsin could potently induce EBV lytic cycle and mediate enhanced cell death with GCV, suggesting potential application of romidepsin for the treatment of EBV-associated cancers.postprin

    Cardiac Myosin Binding Protein C and MAP-Kinase Activating Death Domain-Containing Gene Polymorphisms and Diastolic Heart Failure

    Get PDF
    OBJECTIVE: Myosin binding protein C (MYBPC3) plays a role in ventricular relaxation. The aim of the study was to investigate the association between cardiac myosin binding protein C (MYBPC3) gene polymorphisms and diastolic heart failure (DHF) in a human case-control study. METHODS: A total of 352 participants of 1752 consecutive patients from the National Taiwan University Hospital and its affiliated hospital were enrolled. 176 patients diagnosed with DHF confirmed by echocardiography were recruited. Controls were matched 1-to-1 by age, sex, hypertension, diabetes, renal function and medication use. We genotyped 12 single nucleotide polymorphisms (SNPs) according to HapMap Han Chinese Beijing databank across a 40 kb genetic region containing the MYBPC3 gene and the neighboring DNA sequences to capture 100% of haplotype variance in all SNPs with minor allele frequencies ≥ 5%. We also analyzed associations of these tagging SNPs and haplotypes with DHF and linkage disequilibrium (LD) structure of the MYBPC3 gene. RESULTS: In a single locus analysis, SNP rs2290149 was associated with DHF (allele-specific p = 0.004; permuted p = 0.031). The SNP with a minor allele frequency of 9.4%, had an odds ratio 2.14 (95% CI 1.25-3.66; p = 0.004) for the additive model and 2.06 for the autosomal dominant model (GG+GA : AA, 95% CI 1.17-3.63; p = 0.013), corresponding to a population attributable risk fraction of 12.02%. The haplotypes in a LD block of rs2290149 (C-C-G-C) was also significantly associated with DHF (odds ratio 2.10 (1.53-2.89); permuted p = 0.029). CONCLUSIONS: We identified a SNP (rs2290149) among the tagging SNP set that was significantly associated with early DHF in a Chinese population

    Synthesis of p- and n-type Gels Doped with Ionic Charge Carriers

    Get PDF
    In this study, we synthesized the new kinds of semiconducting polymeric gels having negative (n-type) and positive (p-type) counter ions as charge carriers. The polyacrylamide gel was doped with pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt), havingions as side groups and Na+ as counter ions, so-called p-type semiconducting gel. The doping process was performed during the polymerization where the pyranine binds to the polymer strands over OH group chemically via radical addition. In a similar way, N-isopropylacrylamide (NIPA) gel was doped with methacrylamidopropyltrimethyl ammonium chloride (MAPTAC), having Cl− as counter ions, so-called n-type semiconducting gel. Here MAPTAC was embedded by copolymerization within the polymer network (NIPA). These semiconducting gels can show different electrical properties by changing the concentration of the doping agents, swelling ratio etc. We have shown that the pn junction, formed by combining p-type and n-type gels together in close contact, rectifies the current similar to the conventional Si and Ge diodes

    HLA alleles associated with asparaginase hypersensitivity in Chinese children

    Get PDF
    Asparaginase is an important drug to treat childhood haematological malignancies. Data on the association between human leukocyte antigens (HLA) and asparaginase hypersensitivity among Chinese are lacking. We conducted a retrospective study to identify HLA alleles associated with asparaginase hypersensitivity among Chinese children with acute lymphoblastic leukaemia (ALL), mixed phenotype leukaemia and non-Hodgkin lymphoma (NHL), who received asparaginases with HLA typing performed between 2009 and 2019. 107 Chinese patients were analysed. 66.3% (71/107) developed hypersensitivity to at least one of the asparaginases. HLA-B*46:01 (OR 3.8, 95% CI 1.4-10.1, p < 0.01) and DRB1*09:01 (OR 4.3, 95% CI 1.6-11.4, p < 0.01) were significantly associated with L-asparaginase hypersensitivities, which remained significant after adjustment for age, gender and B cell ALL [HLA-B*46:01 (adjusted OR 3.5, 95% 1.3-10.5, p = 0.02) and DRB1*09:01 (OR 4.4, 95% CI 1.6-13.3, p < 0.01)]

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation

    What is new in uremic toxicity?

    Get PDF
    Uremic syndrome results from a malfunctioning of various organ systems due to the retention of compounds which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. If these compounds are biologically active, they are called uremic toxins. One of the more important toxic effects of such compounds is cardio-vascular damage. A convenient classification based on the physico-chemical characteristics affecting the removal of such compounds by dialysis is: (1) small water-soluble compounds; (2) protein-bound compounds; (3) the larger “middle molecules”. Recent developments include the identification of several newly detected compounds linked to toxicity or the identification of as yet unidentified toxic effects of known compounds: the dinucleotide polyphosphates, structural variants of angiotensin II, interleukin-18, p-cresylsulfate and the guanidines. Toxic effects seem to be typically exerted by molecules which are “difficult to remove by dialysis”. Therefore, dialysis strategies have been adapted by applying membranes with larger pore size (high-flux membranes) and/or convection (on-line hemodiafiltration). The results of recent studies suggest that these strategies have better outcomes, thereby clinically corroborating the importance attributed in bench studies to these “difficult to remove” molecules

    Fluorescent Gold Nanoprobes for the Sensitive and Selective Detection for Hg2+

    Get PDF
    A simple, cost-effective yet rapid and sensitive sensor for on-site and real-time Hg2+ detection based on bovine serum albumin functionalized fluorescent gold nanoparticles as novel and environmentally friendly fluorescent probes was developed. Using this probe, aqueous Hg2+ can be detected at 0.1 nM in a facile way based on fluorescence quenching. This probe was also applied to determine the Hg2+ in the lake samples, and the results demonstrate low interference and high sensitivity
    corecore