64 research outputs found

    Phase-I trial of oral fluoropyrimidine anticancer agent (S-1) with concurrent radiotherapy in patients with unresectable pancreatic cancer

    Get PDF
    In this phase-I trial, we evaluated the safety of S-1, a novel oral fluoropyrimidine anticancer agent, combined with external-beam radiotherapy (EBRT) to determine the maximum-tolerated dose and dose-limiting toxicity (DLT) in unresectable pancreatic cancer patients. Patients had histologically proven unresectable locally advanced or metastatic pancreatic cancer. S-1 was administered orally twice daily. External-beam radiotherapy was delivered in fractions of 1.25 Gy × 2 per day, totalling 50 Gy per 40 fractions for 4 weeks. S-1 was given at five dose levels: 60 mg m–2 day–1 on days 1–7 and 15–21 (level 1), 1–14 (level 2), and 1–21 (level 3a) and 80 mg m–2 day–1 on days 1–21 (level 3b) and 1–28 (level 4). We studied 17 patients: dose levels 1 (four patients), 2 (four patients), 3a (three patients), 3b (three patients), and 4 (three patients). One patient in level 1 (grade 3 vomiting) and two patients in level 4 (grade 4 neutropenia and grade 3 anorexia) showed DLT. No DLT was seen for levels 2, 3a, and 3b. Clinical effects by computed tomography included 5 partial responses (35%), 11 cases of stable disease, and one case of progressive disease. CA19–9 levels of less than half the starting values were observed in 8 of 16 (50%) patients. S-1 at a dose of 80 mg m–2 day–1 given on days 1–21 is safe and recommended for phase-II study in patients with locally advanced and unresectable pancreatic cancer when given with EBRT

    Enhanced Uridine Bioavailability Following Administration of a Triacetyluridine-Rich Nutritional Supplement

    Get PDF
    Uridine is a therapy for hereditary orotic aciduria and is being investigated in other disorders caused by mitochondrial dysfunction, including toxicities resulting from treatment with nucleoside reverse transcriptase inhibitors in HIV. Historically, the use of uridine as a therapeutic agent has been limited by poor bioavailability. A food supplement containing nucleosides, NucleomaxX®, has been reported to raise plasma uridine to supraphysiologic levels

    EORTC Early Clinical Studies Group early phase II trial of S-1 in patients with advanced or metastatic colorectal cancer

    Get PDF
    Cancer of the colon and rectum is one of the most frequent malignancies both in the US and Europe. Standard palliative therapy is based on 5-fluorouracil/folinic acid combinations, with or without oxaliplatin or irinotecan, given intravenously. Oral medication has the advantage of greater patient convenience and acceptance and potential cost savings. S-1 is a new oral fluorinated pyrimidine derivative. In a nonrandomized phase II study, patients with advanced/metastatic colorectal cancer were treated with S-1 at 40 mg m-2 b.i.d. for 28 consecutive days, repeated every 5 weeks, but by amendment the dose was reduced to 35 mg m-2 during the study because of a higher than expected number of severe adverse drug reactions. In total 47 patients with colorectal cancer were included. In the 37 evaluable patients there were nine partial responses (24%), 17 stable diseases (46%) and 11 patients had progressive disease (30%). Diarrhoea occurred frequently and was often severe: in the 40 and 35 mg m-2 group, respectively, 38 and 35% of the patients experienced grade 3-4 diarrhoea. The other toxicities were limited and manageable. S-1 is active in advanced colorectal cancer, but in order to establish a safer dose the drug should be subject to further investigations

    Phase I trial of oral S-1 combined with gemcitabine in metastatic pancreatic cancer

    Get PDF
    The objective of this study was to determine the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs) of S-1, an oral fluorouracil derivative, combined with gemcitabine, the current standard treatment for advanced pancreatic cancer (APC). The subjects were histopathologically proven APC patients with distant metastasis. S-1 was administered orally twice daily each day for 14 days and gemcitabine on days 8 and 15 of each cycle, and this was repeated every 21 days. Doses of each drug were planned as follows: level 1: 800/60, level 2a: 800/80, level 2b: 1000/60, level 3: 1000/80 (gemcitabine (mg m−2)/S-1 (mg m−2 day−1)). In all, 21 patients with APC were enrolled. The main grade 3–4 toxicities observed during first cycle were neutropenia (33%), anaemia (10%), thrombocytopenia (14%) and anorexia (10%). There were no DLT observed in level 1. Three of six patients in level 2a had DLT and this level was considered the MTD. In all, 12 patients in level 2b had no DLT and this level was selected as the recommended dose. Applicable responses were one complete response and nine partial responses (48%). As toxicities were well tolerated and antitumour activities seem to be promising, this combination can be recommended for further phase II studies with APC

    Importance of dose-schedule of 5-aza-2'-deoxycytidine for epigenetic therapy of cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy. Since this epigenetic change is reversible, it is a potential target for chemotherapeutic intervention using an inhibitor of DNA methylation, such as 5-aza-2'-deoxycytidine (DAC). Although clinical studies show that DAC has activity against hematological malignancies, the optimal dose-schedule of this epigenetic agent still needs to be established.</p> <p>Methods</p> <p>Clonogenic assays were performed on leukemic and tumor cell lines to evaluate the <it>in vitro </it>antineoplastic activity of DAC. The reactivation of TSGs and inhibition of DNA methylation by DAC were investigated by reverse transcriptase-PCR and Line-1 assays. The <it>in vivo </it>antineoplastic activity of DAC administered as an i.v. infusion was evaluated in mice with murine L1210 leukemia by measurement of survival time, and in mice bearing murine EMT6 mammary tumor by excision of tumor after chemotherapy for an <it>in vitro </it>clonogenic assay.</p> <p>Results</p> <p>Increasing the DAC concentration and duration of exposure produced a greater loss of clonogenicity for both human leukemic and tumor cell lines. The reactivation of the TSGs (<it>p57KIP2 </it>in HL-60 leukemic cells and <it>p16CDKN2A </it>in Calu-6 lung carcinoma cells) and the inhibition of global DNA methylation in HL-60 leukemic cells increased with DAC concentration. In mice with L1210 leukemia and in mice bearing EMT6 tumors, the antineoplastic action of DAC also increased with the dose. The plasma level of DAC that produced a very potent antineoplastic effect in mice with leukemia or solid tumors was > 200 ng/ml (> 1 μM).</p> <p>Conclusion</p> <p>We have shown that intensification of the DAC dose markedly increased its antineoplastic activity in mouse models of cancer. Our data also show that there is a good correlation between the concentrations of DAC that reduce <it>in vitro </it>clonogenicity, reactivate TSGs and inhibit DNA methylation. These results suggest that the antineoplastic action of DAC is related to its epigenetic action. Our observations provide a strong rationale to perform clinical trials using dose intensification of DAC to maximize the chemotherapeutic potential of this epigenetic agent in patients with cancer.</p

    Cellular pharmacology studies of anticancer agents: recommendations from the EORTC-PAMM group

    Get PDF
    An increasing number of manuscripts focus on the in vitro evaluation of established and novel anti-tumour agents in experimental models. Whilst the design of such in vitro assays is inherently flexible, some of these studies lack the minimum information necessary to critically evaluate their relevance or have been carried out under unsuitable conditions. The use of appropriate and robust methods and experimental design has important implications for generating results that are reliable, relevant, and reproducible. The Pharmacology and Molecular Mechanisms (PAMM) group of the European Organization for Research and Treatment of Cancer (EORTC) is the largest group of academic scientists working on drug development and bundle decades of expertise in this field. This position paper addresses all researchers with an interest in the preclinical and cellular pharmacology of anti-tumour agents and aims at generating basic recommendations for the correct use of compounds to be tested for anti-tumour activity using a range of preclinical cellular models of cancer
    • …
    corecore