71 research outputs found

    Can a standard dose of eicosapentaenoic acid (EPA) supplementation reduce the symptoms of delayed onset of muscle soreness?

    Get PDF
    Unaccustomed exercise can result in delayed onset of muscle soreness (DOMS) which can affect athletic performance. Although DOMS is a useful tool to identify muscle damage and remodelling, prolonged symptoms of DOMS may be associated with the over-training syndrome. In order to reduce the symptoms of DOMS numerous management strategies have been attempted with no significant effect on DOMS-associated cytokines surge. The present study aimed to investigate the acute and chronic effects of a 2x180 mg per day dose of eicosapentaenoic acid (EPA) on interleukin-6 (IL-6) mediated inflammatory response and symptoms associated with DOMS. Methods: Seventeen healthy non-smoking females (age 20.4 +/- 2.1 years, height 161.2 +/- 8.3cm and mass 61.48 +/- 7.4kg) were randomly assigned to either placebo (N = 10) or EPA (N = 7). Serum IL-6, isometric and isokinetic (concentric and eccentric) strength, and rating of perceived exertion (RPE) were recorded on four occasions: i-prior to supplementation, ii-immediately after three weeks of supplementation (basal effects), iii-48 hours following a single bout of resistance exercise (acute training response effects), and iv-48 hours following the last of a series of three bouts of resistance exercise (chronic training response effects). Results: There was only a group difference in the degree of change in circulating IL-6 levels. In fact, relative to the first baseline, by the third bout of eccentric workout, the EPA group had 103 +/- 60% increment in IL-6 levels whereas the placebo group only had 80 +/- 26% incremented IL-6 levels (P = 0.020). We also describe a stable multiple linear regression model which included measures of strength and not IL-6 as predictors of RPE scale. Conclusion: The present study suggests that in doubling the standard recommended dose of EPA, whilst this may still not be beneficial at ameliorating the symptoms of DOMS, it counter intuitively appears to enhance the cytokine response to exercise. In a context where previous in vitro work has shown EPA to decrease the effects of inflammatory cytokines, it may in fact be that the doses required in vivo is much larger than current recommended amounts. An attempt to dampen the exercise-induced cytokine flux in fact results in an over-compensatory response of this system

    Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission

    Get PDF
    The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures

    The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes

    Get PDF

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
    corecore