308 research outputs found

    Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin

    Get PDF
    The mammalian hypothalamic magnocellular neurons of the supraoptic and paraventricular nuclei are among the best understood of all peptidergic neurons. Through their anatomical features, vasopressin- and oxytocin-containing neurons have revealed many important aspects of dendritic functions. Here, we review our understanding of the mechanisms of somato-dendritic peptide release, and the effects of autocrine, paracrine and hormone-like signalling on neuronal networks and behaviour

    A three-year-old boy with X-linked adrenoleukodystrophy and congenital pulmonary adenomatoid malformation: a case report

    Get PDF
    Abstract Introduction X-linked adrenoleukodystrophy leads to demyelination of the nervous system, adrenal insufficiency, and accumulation of long-chain fatty acids. Most young patients with X-linked adrenoleukodystrophy develop seizures and progressive neurologic deficits, and die within the first two decades of life. Congenital or acquired disorders of the respiratory system have not been previously described in patients with X-linked adrenoleukodystrophy. Case presentation A 3-year-old Arabic boy from Yemen presented with discoloration of the mucous membranes and nail beds, which were considered cyanoses due to methemoglobinemia. He also had shortness of breath, fatigue, emesis and dehydration episodes for which he was admitted to our hospital. Chest radiograph and chest computed tomography scans showed congenital pulmonary adenomatoid malformation. A few weeks before the removal of the malformation, he had a significant episode of hypotension and hypoglycemia. This development required further in-hospital evaluation that led to the diagnosis of adrenal insufficiency and the initiation of treatment with corticosteroids. One year later, he developed seizures and loss of consciousness. Magnetic resonance imaging of his head showed diffuse demyelination secondary to X-linked adrenoleukodystrophy. He was treated with anti-seizure and anti-oxidants, and was referred for bone marrow transplant evaluation. Conclusion The presence of adrenal insufficiency, neurologic deficits and seizures are common manifestations of X-linked adrenoleukodystrophy. The association of congenital lung disease with X-linked adrenoleukodystrophy or Addison\u27s disease has not been described previously

    Maternal protein and folic acid intake during gestation does not program leptin transcription or serum concentration in rat progeny

    Get PDF
    Maternal nutrition during gestation influences the development of the fetus, thereby determining its phenotype, including nutrient metabolism, appetite, and feeding behavior. The control of appetite is a very complex process and can be modulated by orexigenic and anorexigenic mediators such as leptin, which is involved in the regulation of energy homeostasis by controlling food intake and energy expenditure. Leptin transcription and secretion are regulated by numerous factors, nutrition being one of them. The present study was designed to test whether maternal nutrition can permanently affect leptin gene transcription and leptin serum concentration in rat progeny. Moreover, we analyzed whether leptin expression and secretion in response to high-fat postweaning feeding depends on the maternal diet during gestation. Pregnant rats were fed either a normal protein, normal folic acid diet (the AIN-93 diet); a protein-restricted, normal folic acid diet; a protein-restricted, folic acid-supplemented diet; or a normal protein, folic acid-supplemented diet. After weaning, the progeny was fed either the AIN-93 diet or a high-fat diet. Neither maternal nutrition nor the postweaning diet significantly affected Lep transcription. High-fat feeding after weaning was associated with higher serum leptin concentration, but the reaction of an organism to the fat content of the diet was not determined by maternal nutrition during gestation. There was no correlation between Lep mRNA level and serum leptin concentration. Global DNA methylation in adipose tissue was about 30% higher in rats fed postnatally the high-fat diet (PΒ <Β 0.01). Our study showed that the protein and folic acid content in the maternal diet had no significant programming effect on Lep transcription and serum leptin concentration in the rats

    Folic Acid and Protein Content in Maternal Diet and Postnatal High-Fat Feeding Affect the Tissue Levels of Iron, Zinc, and Copper in the Rat

    Get PDF
    Although maternal, fetal, and placental mechanisms compensate for disturbances in the fetal environment, any nutritional inadequacies present during pregnancy may affect fetal metabolism, and their consequences may appear in later life. The aim of the present study is to investigate the influence of maternal diet during gestation on Fe, Zn, and Cu levels in the livers and kidneys of adult rats. The study was carried out on the offspring (n = 48) of mothers fed either a protein-balanced or a protein-restricted diet (18% vs. 9% casein) during pregnancy, with or without folic acid supplementation (0.005- vs. 0.002-g folic acid/kg diet). At 10Β weeks of age, the offspring of each maternal group were randomly assigned to groups fed either the AIN-93G diet or a high-fat diet for 6Β weeks, until the end of the experiment. The levels of Fe, Zn, and Cu in the livers and kidneys were determined by the F-AAS method. It was found that postnatal exposure to the high-fat diet was associated with increased hepatic Fe levels (p < 0.001), and with decreased liver Zn and Cu contents (p < 0.01 and p < 0.05, respectively), as well as with decreased renal Cu contents (p < 0.001). Moreover, the offspring’s tissue mineral levels were also affected by protein and folic acid content in the maternal diet. Both prenatal protein restriction and folic acid supplementation increased the liver Zn content (p < 0.05) and the kidney Zn content (p < 0.001; p < 0.05, respectively), while folic acid supplementation resulted in a reduction in renal Cu level (p < 0.05). Summarizing, the results of this study show that maternal dietary folic acid and protein intake during pregnancy, as well as the type of postweaning diet, affect Fe, Zn, and Cu levels in the offspring of the rat. However, the mechanisms responsible for this phenomenon are unclear, and warrant further investigation

    Disruption of Nrf2, a Key Inducer of Antioxidant Defenses, Attenuates ApoE-Mediated Atherosclerosis in Mice

    Get PDF
    Background: Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2-/-) causes increased susceptibility to pulmonary emphysema, asthma and sepsis due to increased oxidative stress and inflammation. Here we have tested the hypothesis that disruption of Nrf2 in mice causes increased atherosclerosis. Principal Findings: To investigate the role of Nrf2 in the development of atherosclerosis, we crossed Nrf2-/- mice with apoliporotein E-deficient (ApoE-/- mice. ApoE-/- and ApoE-/- Nrf2-/- mice were fed an atherogenic diet for 20 weeks, and plaque area was assessed in the aortas. Surprisingly, ApoE-/- Nrf2-/- mice exhibited significantly smaller plaque area than ApoE-/- controls (11.5% vs 29.5%). This decrease in plaque area observed in ApoE-/- Nrf2-/- mice was associated with a significant decrease in uptake of modified low density lipoproteins (AcLDL) by isolated macrophages from ApoE-/- Nrf2-/- mice. Furthermore, atherosclerotic plaques and isolated macrophages from ApoE-/- Nrf2-/- mice exhibited decreased expression of the scavenger receptor CD36. Conclusions: Nrf2 is pro-atherogenic in mice, despite its antioxidative function. The net pro-atherogenic effect of Nrf2 may be mediated via positive regulation of CD36. Our data demonstrates that the potential effects of Nrf2-targeted therapies on cardiovascular disease need to be investigated.9 page(s

    An Effective Assessment of Simvastatin-Induced Toxicity with NMR-Based Metabonomics Approach

    Get PDF
    BACKGROUND: Simvastatin, which is used to control elevated cholesterol levels, is one of the most widely prescribed drugs. However, a daily excessive dose can induce drug-toxicity, especially in muscle and liver. Current markers for toxicity reflect mostly the late stages of tissue damage; thus, more efficient methods of toxicity evaluation are desired. METHODOLOGY/PRINCIPAL FINDINGS: As a new way to evaluate toxicity, we performed NMR-based metabonomics analysis of urine samples. Compared to conventional markers, such as AST, ALT, and CK, the urine metabolic profile provided clearer distinction between the pre- and post-treatment groups treated with toxic levels of simvastatin. Through multivariate statistical analysis, we identified marker metabolites associated with the toxicity. Importantly, we observed that the treatment group could be further categorized into two subgroups based on the NMR profiles: weak toxicity (WT) and high toxicity (HT). The distinction between these two groups was confirmed by the enzyme values and histopathological exams. Time-dependent studies showed that the toxicity at 10 days could be reliably predicted from the metabolic profiles at 6 days. CONCLUSIONS/SIGNIFICANCE: This metabonomics approach may provide a non-invasive and effective way to evaluate the simvastatin-induced toxicity in a manner that can complement current measures. The approach is expected to find broader application in other drug-induced toxicity assessments

    A Folding Pathway-Dependent Score to Recognize Membrane Proteins

    Get PDF
    While various approaches exist to study protein localization, it is still a challenge to predict where proteins localize. Here, we consider a mechanistic viewpoint for membrane localization. Taking into account the steps for the folding pathway of Ξ±-helical membrane proteins and relating biophysical parameters to each of these steps, we create a score capable of predicting the propensity for membrane localization and call it FP3mem. This score is driven from the principal component analysis (PCA) of the biophysical parameters related to membrane localization. FP3mem allows us to rationalize the colocalization of a number of channel proteins with the Cav1.2 channel by their fewer propensities for membrane localization

    MAP4K3 Is a Component of the TORC1 Signalling Complex that Modulates Cell Growth and Viability in Drosophila melanogaster

    Get PDF
    Background: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several signalling pathways, including the Imd, EGFR, TORC1 and JNK modules, in different organisms and experimental assays. We have analyzed the consequences of changing the levels of MAP4K3 expression in the development of the Drosophila wing, a convenient model system to characterize gene function during epithelial development. Methodology and Principal Findings: Using loss-of-function mutants and over-expression conditions we find that MAP4K3 activity affects cell growth and viability in the Drosophila wing. These requirements are related to the modulation of the TORC1 and JNK signalling pathways, and are best detected when the larvae grow in a medium with low protein concentration (TORC1) or are exposed to irradiation (JNK). We also show that MAP4K3 display strong genetic interactions with different components of the InR/Tor signalling pathway, and can interact directly with the GTPases RagA and RagC and with the multi-domain kinase Tor. Conclusions and Significance: We suggest that MAP4K3 has two independent functions during wing development, one related to the activation of the JNK pathway in response to stress and other in the assembling or activation of the TORC1 complex, being critical to modulate cellular responses to changes in nutrient availability

    Maternal hyperleptinemia is associated with male offspring’s altered vascular function and structure in mice

    Get PDF
    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Lepr db/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under astandard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post-natal environments to contribute to altered vascular function in offspring of diabetic pregnancie

    Mechanisms of TSC-mediated Control of Synapse Assembly and Axon Guidance

    Get PDF
    Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb) and Target of Rapamycin (TOR). To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k), did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development
    • …
    corecore