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1 

The mammalian hypothalamic magnocellular neurons of the supraoptic and paraventricular nuclei are 1 
among the best understood of all peptidergic neurons. Through to their anatomical features, vasopressin- 2 
and oxytocin-containing neurones have revealed many important aspects of dendritic functions. Here we 3 
review our understanding of the mechanisms of somato-dendritic peptide release, and the effects of 4 
autocrine, paracrine and hormone-like signalling on neuronal networks and behaviour. 5 

1 

1 

Forms of information processing and intercellular communication in the brain may be classified, at least 1 
in part, according to distinct spatio-temporal features. At one end of the spectrum is classical chemical 2 
synaptic transmission. Chemical synapses are structurally organized units with a well-defined physical 3 
substrate, and have evolved to transfer information between pairs of neurons efficiently, in a precise, spatially 4 
constrained and rapid manner. The strength and time course of this “hard-wired” communication is 5 
dependent on the probability of presynaptic transmitter release, the affinity of the postsynaptic receptors for 6 
the transmitter, the density of postsynaptic receptors clustered at highly specialized sites, and the rate of 7 
diffusion/uptake of the neurotransmitter at/from the synaptic cleft [1-4]. 8 

At the opposite end of the spatio-temporal spectrum, paracrine or hormone-like signalling modalities 1 
mediate transfer of information between entire populations of neurons, which in some cases may be located 2 
relatively distant from each other, acting in a more diffuse, less spatially constrained manner and on a slower 3 
time scale. In the hard-wired chemical synapse, the “secrecy” of the communication is largely determined by 4 
the spatially constrained structure of the synapse. Conversely, in paracrine transmission, specificity is solely 5 
determined by the specificity of the signal/receptor interaction. Examples of signalling mechanisms acting at 6 
more distant sites include release of catecholamines and acetylcholine from en passant boutons on axonal 7 
segments [5], and gaseous neurotransmitters including nitric oxide and carbon monoxide [6]. However, the 8 
prototypes for hormone-like signalling within the brain are many neuropeptides, including vasopressin and 9 
oxytocin, released from their somata and dendrites. They are public announcements; they are messages not 10 
from one cell to another, but rather a message that is directed from one population of neurons to another [7-9].  11 
 1 

1 
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2 

The dendrites of magnocellular neurons (MCNs) of the hypothalamic supraoptic nucleus (SON) and 3 
paraventricular nucleus (PVN) have some unique characteristics compared to other neurons in the central 4 
nervous system. They are aspiny, branch sparsely, in many cases are aggregated in bundles, and are relatively 5 
thick and varicose. Dendrites in MCNs are structurally dynamic, undergoing activity-dependent remodelling, 6 
including shrinkage/elongation, altered branching patterns and increased bundling [10, 11]. Another salient 7 
feature is that in more than 60% of MCNs, axons arise from a dendrite rather than more conventionally from 8 
the soma [10, 12]. These axon-bearing dendrites may not only be privileged in their ability to influence spiking 9 
initiation and overall neuronal output [13], but they could be in turn more efficiently affected by back-10 
propagating action potentials (see below).  11 
 The MCNs of the SON and PVN themselves are large and can easily be identified. Their cell bodies 12 
and dendrites are aggregated into compact and homogenous nuclei located in and receiving input from the 13 
central nervous system. Their axons project to the posterior pituitary gland, which lacks an effective blood-14 
brain barrier allowing secretion from this site to enter the systemic circulation. MCNs dendrites are known to 15 
store the majority of the neuropeptide content present in the SON and PVN, and studies of dendritic release 16 
using push-pull perfusion or microdialysis [14, 15] can be accomplished without contamination by local 17 
synaptic release or reuptake of peripherally-released peptides (since the blood-brain barrier effectively blocks 18 
reuptake), dividing the brain and its periphery into two separate compartments. Simultaneous microdialysis 19 
and blood sampling in vivo has provided evidence that there is sometimes a clear dissociation between release 20 
of peptides into these two compartments, and these seem to be both stimulus-dependent and peptide-specific 21 
[16]. For example, a dissociation between dendritic and axon terminal oxytocin release is evident from the 22 
effects of alpha melanocyte-stimulating hormone (α-MSH). Activation of melanocortin 4 receptor receptors on 23 
oxytocin cells by α-MSH mobilizes intracellular calcium and stimulates dendritic oxytocin release, but the 24 
electrical activity of the cell is inhibited, leading to less oxytocin release into the periphery [17]. Another 25 
example of dissociated release patterns is that of vasopressin release into the periphery to counteract water-26 
loss from the kidneys in response to increased plasma osmolality. The axon terminal release of vasopressin 27 
after a systemic hypertonic saline injection increases immediately, but dendritic release of vasopressin in the 28 
SON starts only an hour later, when peripheral release is subsiding, illustrating a separation in time between 29 
release events in the dendrites and the terminals of the same neurons [18].  30 

Whereas the SON only contains MCNs, the PVN houses many sets of functionally distinct neurons, 31 
classified into two major groups: MCNs and parvocellular neurons. Parvocellular neurosecretory neurons 32 
send their axons to the median eminence, from where they release hypophysiotropic hormones that control 33 
the function of the anterior pituitary and the major hypothalamo-pituitary axes. Parvocellular preautonomic 34 
neurons send long descending projections to sympathetic and parasympathetic centres in the brainstem and 35 
spinal cord, modulating sympathetic and parasympathetic outflows to a variety of target organs, including the 36 
heart, the peripheral vasculature and the kidneys [19-21]. In addition to neurosecretory and autonomic targets, 37 
the PVNs also include neurons that project to hierarchically higher centres in the brain, including the central 38 
amygdala, projections recently shown to modulate fear-conditioned responses [22]. These distinctive 39 
anatomical and physiological features make the PVN an ideal model to study the role of neuropeptides as 40 
signaling molecules in mediating communication within and between different neuron populations in the 41 
brain [8, 9]. 42 

 43 
 44 

45 

Modulation of neuronal function by dendritic transmitter release is a widespread phenomenon, and is 46 
specific neither to a localized part of the brain nor to a particular subtype of signalling molecule [23-26]. As 47 
mentioned above, the best-characterised sites of dendritic peptide release are the hypothalamic SON and 48 
PVN, where the MCNs release vasopressin and oxytocin from their somato-dendritic compartment. At the 49 
ultrastructural level, large dense-cored vesicles (LDCVs) are broadly distributed throughout vasopressin and 50 
oxytocin neurons and it has been shown that their contents can be released from any part of the neurons, 51 
including the cell body and especially the dendrites (Fig. 1). The first unequivocal evidence of LDCV release 52 
from dendrites came from the visualization of exocytotic profiles in electron-microscopic studies on 53 
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sympathetic and hypothalamic neurons [27-29]. Pow and Morris [29] revealed the classical LDCV morphology 54 
in the dendrites and soma of MCNs and omega-shaped fusion profiles at the plasma membrane. The authors 55 
also visualized dendritic exocytosis from oxytocin and vasopressin neurons when they treated hypothalamic 56 
tissue with tannic acid to “freeze” aggregations of the exocytosed peptide granules [29-31]. Later 57 
microsampling techniques in vivo confirmed and amplified the data on dendritic vasopressin and oxytocin 58 
release and revealed many aspects of its control [32].  59 

The LDCVs often contain more than one neuropeptide, and in fact many neurons release a mixture of 60 
neuropeptides [33, 34]. For instance, vasopressin co-exists with dynorphin [35], galanin [36], pituitary 61 
adenylate cyclase activating polypeptide (PACAP) [37] and secretin in MCNs of the SON and PVN. On the 62 
other hand, oxytocin in the SON co-exists with encephalin and dynorphin [38, 39]. Other peptides, for 63 
example apelin is also synthesized in MCNs, but it is packed and released from separate LDCVs [40].  64 

 65 
 66 

67 

68 

69 

 Since peptide release from MCNs is not restricted to any particular part of the plasma membrane [29, 70 
30], regulation of exocytosis may rely on controlling the access of the vesicles to the plasma membrane [41]. 71 
This led to the suggestion that this control may be exerted by cytoskeletal elements, as in classical endocrine 72 
cells. In addition to a network throughout the cytoplasm, the cell bodies of MCNs possess a network of 73 
filamentous protein (F-actin) beneath the plasma membrane, usually referred to as cortical F-actin. In 74 
endocrine cells, this F-actin engulfs secretory vesicles, segregating them from the plasma membrane. As F-75 
actin undergoes fast, transient and reversible depolymerization during hormone secretion, and as areas of 76 
exocytosis have been found to be lacking F-actin, cortical F-actin has long been proposed to act as a barrier, 77 
restricting the movement of secretory vesicles to their release sites at the plasma membrane [42, 43]. 78 

MCNs possess F-actin structures in the subcortical regions of somata and dendrites [44, 45]. The F-actin 79 
of the somata/dendrites is rapidly and reversibly depolymerized by factors that stimulate secretion. Moreover, 80 
depolymerization of F-actin stimulates oxytocin and vasopressin release from the dendrites and acute 81 
exposure to drugs that polymerize F-actin inhibits stimulated dendritic peptide release. Thus the evoked 82 
release from the dendrites requires depolymerization of F-actin [45]. 83 

However, there is evidence that the F-actin cortex, classically viewed as a barrier that hinders the 84 
movements of LDCVs to the plasma membrane, might also play a positive role either by providing ‘tracks’ 85 
that permit docking at appropriate sites, or by spatially constraining components of the release machinery. 86 
This suggests that activation of secretion does not simply trigger the disassembly of the barrier, but rather a 87 
reorganization of F-actin, which allows the LDCVs access to the release sites and provides the structural 88 
support necessary for exocytosis [43]. In MCNs, it appears that F-actin remodelling plays a part in regulating 89 
the availability of functionally mature and readily releasable vesicles in different parts of the cell and thus is 90 
involved in the differential control of release from different parts of the cell. In contrast to neuronal synapses, 91 
release of vesicles from both the somata/dendrites and axon terminals in MCNs does not appear to occur at 92 
morphologically distinct active zones [30]. Thus, actin filaments could provide transport, tethering, barriers 93 
and support structures at different times and locations [45]. 94 
   95 

96 

The stimulated release of both LDCVs and synaptic vesicles involves the soluble N-ethylmaleimide 97 
sensitive factor attachment receptor (SNARE) complex, which allows the membrane of the vesicle to fuse with 98 
the plasma membrane and release its cargo into the extracellular space. There is evidence for the involvement 99 
of SNARE proteins in the release of LDCVs from dendrites, with the majority of the data arising from studies 100 
of substantia nigra dopamine cells [46-48]. Data from several other brain regions, including hippocampus [49, 101 
50], olfactory bulb [51], cerebellum [52] and neocortex [53] indicate the requirement for SNARE variants in 102 
dendritic transmitter release.  103 

Sensitivity of somato-dendritic release to tetanus toxin which cleaves VAMP-2 (a vesicular component 104 
of the SNARE complex) was described in isolated MCNs [54], suggesting that VAMP-2 proteins similar to 105 
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those operating in synapses may regulate dendritic exocytosis of oxytocin and vasopressin. Many SNARE 106 
proteins have been identified in the terminals of the posterior pituitary [55, 56]. However, 107 
immunofluorescence studies have shown a surprising lack of some of the core proteins, such as VAMP-2 and 108 
SNAP-25 in the somata and dendrites of the SON. Perhaps there are more members or isoforms of the existing 109 
members to be identified, but, at present, the somato-dendritic peptide release from MCNs appears to occur in 110 
the absence of the full complement of exocytosis machinery that is generally considered to be mandatory for 111 
regulated exocytosis [57].  112 

113 

Exocytotic release of vasopressin and oxytocin from the axonal terminals in the posterior pituitary 114 
gland is linked to electrical activity, resulting from Ca2+ entry through voltage-gated channels following 115 
depolarization of the terminals by invading action potentials [58]. The available stores of small electron-lucent 116 
vesicles (ELVs) at synapses are replenished by endocytotic recycling and they are quickly re-filled with 117 
neurotransmitter by transporter-mediates uptake [59]. However, neuropeptides, which are not recycled after 118 
release have to be synthesized and the LDCVs loaded in the cell body. Compared to ELVs, LDCVs differ by 119 
requiring sustained increases in intracellular Ca2+ to release their contents. As a consequence, LDCVs have 120 
longer latencies to release and require stronger stimulation for exocytosis, such as, for example, bursts of 121 
electrical activity. The LDCVs also differ from ELVs in that the associated Ca2+-sensor that triggers release has 122 
a higher affinity for calcium. Consequently it is not necessary for LDCVs to be located in close proximity to 123 
membrane calcium channels to undergo exocytosis, and synaptic specializations are not a prerequisite for 124 
release [60-64].  125 

 As it is the case in many neurons, the membrane properties of the dendrites support action potentials 126 
allowing them to propagate into the dendrites [65]. A rise in dendritic free Ca2+ content initiated by action 127 
potential back-propagation has been suggested to trigger dendritic dopamine release within the substantia 128 
nigra [46]. While action potentials may propagate into the dendrites of MCNs [66] dendritic release of 129 
vasopressin and oxytocin can occur independently of action potential firing [67, 68] . 130 
 131 

132 

Calcium-dependent exocytosis represents a universal mechanism underlying release of 133 
neurotransmitters from presynaptic terminals and release of neurohormones from neuroendocrine cells. 134 
Similar to the calcium-dependent release of neuropeptides from MCNs axonal terminals in the 135 
neurohypophysis [58], dendritic release of these same neuropeptides has also been shown to be dependent on 136 
a rise in intracellular free Ca2+ in the dendrites [54, 69, 70].  137 

The spatio-temporal properties and dynamics of the intracellular Ca2+ signal are key determinants of 138 
transmitter release in classical synapses [71]. These are in part determined by the source of Ca2+ and its 139 
proximity to the release machinery, as well as the different Ca2+ buffering mechanisms available to influence 140 
the magnitude and time course of the calcium signal. In this sense, a variety of different sources of Ca2+ have 141 
been shown to efficiently trigger dendritic release of oxytocin and vasopressin from MCNs.  142 

 143 

144 

A major route of entry of Ca2+ involved in dendritic neuropeptide release is through voltage-operated 145 
Ca2+ channels (VOCCs) [58, 72]. MCNs express several types of VOCCs [73], but the N-type channels appear to 146 
be particularly important for dendritic release. Although the current carried by N-type channels is 147 
comparatively small in the somata of MCNs compared to the other VOCC types or indeed the whole-cell Ca2+ 148 
current [74, 75], release of oxytocin from SONs is most sensitive to blockade of N-type channels. As stated 149 
above, these channels can be activated in both in somatodendritic and axonal compartments as a consequence 150 
of membrane depolarization evoked by anterograde or back-propagated action potentials [58]. However, 151 
some chemical signals, notably oxytocin and vasopressin, can themselves trigger dendritic peptide release 152 
without increasing the electrical activity of the neurons. Oxytocin- and vasopressin-neurons express oxytocin- 153 
and vasopressin-receptors, respectively [76], and the peptides act at these receptors to produce a cell-type-154 
specific rise in intracellular Ca2+ concentration. For example, the response induced by vasopressin in 155 
vasopressin cells requires an influx of external Ca2+ through voltage-gated calcium channels, particularly of the 156 
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L-, N- and T-types [77]. The requirement of somato-dendritic release for Ca2+ entry through mainly L- and N-157 
type channels has been shown for other transmitters, including dynorphin [78], dopamine [79, 80], serotonin 158 
[25] and pituitary adenylate cyclase activating polypeptide (PACAP) [70]. 159 
 160 

161 

Another major source of free calcium in neurons are the Ca2+-permeable glutamate N-methyl-D-162 
aspartate (NMDA) receptors. NMDA receptors are particularly important in MCNs, in which they not only 163 
influence overall MCN excitability, but also contribute to the adoption of burst-firing, optimizing in turn 164 
hormonal release from neurohypophysial terminals [81, 82]. Moreover, activation of NMDARs in MCNs 165 
results in large increases in dendritic free Ca2+ levels [8, 83] efficiently evoking dendritic release of both 166 
oxytocin [84] and vasopressin [8]. In addition to their conventional location at postsynaptic sites, functional 167 
NMDARs, with unique molecular and functional properties, have been also recognized to be located at 168 
extrasynaptic sites [85, 86]. In a series of recent studies, we showed the presence in MCNs of functional 169 
extrasynaptic NMDA receptors, which play a major role in regulating MCN excitability [87, 88]. Extrasynaptic 170 
NMDA receptors also contribute to increases in intracellular Ca2+, and unlike synaptic NMDARs, they are 171 
selectively coupled to other Ca2+-dependent signalling mechanisms, including voltage-gated potassium 172 
channels and gamma-aminobutyric acid (GABAA) receptors [88-90]. However, whether synaptic and 173 
extrasynaptic NMDARs selectively or differentially affect dendritic release of neuropeptides is at present 174 
unknown. 175 

 176 

177 

Another important source of Ca2+ shown to evoke and regulate dendritic release of neuropeptides are 178 
intracellular calcium stores. This is particularly the case for oxytocin autocrine effects. Binding of oxytocin to 179 
its receptors on oxytocin neurons mobilizes Ca2+ from intracellular stores in the endoplasmic reticulum [91] 180 
This increase in intracellular Ca2+ is sufficient to induce oxytocin release from dendrites, without affecting the 181 
firing activity of neurons and without inducing release from nerve terminals [67]. Once triggered, dendritic 182 
peptide release can be self-sustaining and hence long-lasting [67]. Other agents that mobilize intracellular 183 
calcium stores, such as thapsigargin, can also evoke dendritic release of neuropeptides [67, 68, 92]. 184 

 185 

186 

Intracellular Ca2+-buffering mechanisms constitute additional critical factors influencing the shape and 187 
time course of intracellular Ca2+ signals. MCNs are endowed with numerous calcium buffering/clearance 188 
mechanisms, including plasmalemmal and endoplasmic reticulum calcium transport ATPases, the 189 
mitochondrial calcium selective uniporter (10), and Ca2+-binding proteins, including calbindin and calretinin 190 
[93, 94]. Most of these mechanisms have been shown to efficiently restrain calcium transients in MCNs [83, 93, 191 
95, 96]. Moreover, blockade of these Ca2+-buffering mechanisms prolonged K+-evoked increases in intracellular 192 
free Ca2+, concomitantly enhancing somatodendritic vasopressin release [95]. Interestingly, the portfolio of 193 
available Ca2+-homeostatic systems differ in somatodendritic and axonal compartments of MCNs [93, 95], 194 
further supporting the notion of independent regulation of these two neuronal compartments during 195 
neuropeptide release by MCNs.  196 

197 

In addition to directly activating dendritic release, elevation of intracellular free Ca2+ concentrations has 198 
another important consequence: it can prime dendritic stores of peptides to make them available for 199 
subsequent activity-dependent release [67]. Spike activity in oxytocin or vasopressin neurons in vivo does not 200 
result in measurable dendritic peptide release, but agents that mobilize Ca2+ from intracellular stores, such as 201 
thapsigargin or cyclopiazonic acid, or some peptides, including oxytocin itself and α-MSH, consistently 202 
induce dendritic release directly [17, 67]. It seems possible that any signal that mobilizes Ca2+ from intracellular 203 
stores might prime dendritic secretion. Moreover, after exposure to agents that mobilize intracellular calcium, 204 
peptide release in response to many stimuli (such as osmotic stimulation, depolarization with high K+ or 205 
electrical stimulation) is dramatically potentiated. In vitro, this priming persists for at least 90 min. Priming 206 
involves preparing a system for some anticipated trigger that will come at some uncertain time in the future; it 207 
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involves making the secretory pool of the target cell available for rapid release in response to that future trigger. 208 
The mechanisms of priming in MCNs involve recruitment of vesicles from a reserve pool into a readily-209 
releasable pool [92], probably through changes in the actin skeleton. Priming also involves recruitment of 210 
VOCCs, suggesting that a stimulus that produces an increased secretory responsiveness with an intermediate 211 
time scale (30-90min) may cause MCNs to recruit N-type calcium channels to the plasma membrane, allowing 212 
them to respond to a subsequent depolarization with a larger secretory response [75]. However, priming does 213 
not appear to require either de novo gene transcription or translation [97]. 214 
   215 

216 

 217 

218 

The physiological functions of dendritically released neurotransmitters include a local autocrine effect 219 
on the neurons from which they are released, as well as effects on surrounding neurons and glia. The overall 220 
consequences can be a dramatic change in firing rate, because these autocrine effects can change both the 221 
inputs to oxytocin cells and also the way that the oxytocin cells respond to those inputs. A striking example of 222 
this is the way that dendritically released oxytocin promotes the milk ejection reflex as described below.  223 

A far more common autocrine effect of dendritic release is auto-inhibition. Vasopressin neurons 224 
discharge in a characteristic phasic pattern that optimizes the efficiency of stimulus-secretion coupling at the 225 
nerve terminals. Vasopressin released from dendrites modulates this phasic activity by a predominantly 226 
inhibitory action. Interestingly, vasopressin, like oxytocin, can facilitate its own dendritic release [98]. This 227 
may explain the time dissociation between peripheral and intra-SON release of vasopressin after a 228 
hyperosmotic stimulus. Although systemic secretion of vasopressin occurs rapidly after an osmotic stimulus, 229 
the dendritic release of vasopressin evolves as a delayed and prolonged response [18]. Mimicking dendritic 230 
release by retrodialysis of vasopressin onto vasopressin neurons inhibits the vasopressin neurons by reducing 231 
their firing rate [99]. Thus, dendritic vasopressin release may activate adjacent dendrites to facilitate its own 232 
release until the local concentration has reached a threshold sufficient to hyperpolarize the neuron and/or 233 
modulate inhibitory inputs. The auto-inhibitory action of dendritic vasopressin may therefore limit the extent 234 
of systemic vasopressin secretion in response to osmotic stimuli or volume depletion. 235 
 236 

237 

Exogenously applied or endogenously released oxytocin also acts on afferent nerve endings. As 238 
presynaptic oxytocin receptors are not found in the SON, this paracrine action was likely to be indirect and 239 
indeed has been shown to be mediated by oxytocin-dependent endocannabinoid release from the oxytocin 240 
neuron [100, 101]. Cannabinoid receptors (CB1) have been localized by immunohistochemistry to both 241 
excitatory and inhibitory axon terminals innervating dendrites in the SON, and the cannabinoid agonist 242 
presynaptically inhibits spontaneous excitatory and inhibitory postsynaptic currents in SON neurons recorded 243 
in slices. Thus, dendritic oxytocin release may act on oxytocin receptors leading to Ca2+ release from 244 
intracellular stores and the ‘on-demand’ generation of endocannabinoids. The endocannabinoids pass through 245 
the membrane, diffuse and bind to presynaptic CB1 receptors, inhibiting both GABAergic and glutamatergic 246 
afferents onto MCNs. This signalling probably has a very short radius of action due to the lipophilic nature of 247 
cannabinoids. However, both oxytocin and vasopressin can spread over larger areas, effectively broadcasting 248 
their message throughout the nucleus.  249 

An example of such longer-radius paracrine action of dendritically-released neuropeptides is 250 
highlighted by our recent study showing that dendritically-released vasopressin is able to modulate the 251 
activity of neighbouring presympathetic neurons within the PVN [8]. We found that activity-dependent 252 
dendritic release of vasopressin from MCNs resulted in a concomitant increase in the firing activity of RVLM-253 
projecting PVN neurons. This interpopulation crosstalk involved the diffusion of vasopressin in the 254 
extracellular space, and binding and activation of V1a receptors in presympathetic neurons. We found that in 255 
contrast to conventional synaptic transmission, the efficiency and strength of this diffuse paracrine action of 256 
vasopressin was dependent on the overall extracellular levels of vasopressin (dependent in part on the 257 
average activity of the entire vasopressin population and on factors regulating vasopressin half-life in the 258 
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extracellular space) as well as the ability of vasopressin to diffuse and reach relatively distant targets (e.g., 259 
tortuosity of the extracellular space).  260 
 261 

262 

263 

264 

Oxytocin- and vasopressin-induced effects on behaviours are exerted at sites that, in some cases, richly 265 
express receptors but are innervated by few peptide-containing projections. Could dendritically released 266 
peptides act at distant brain targets to evoke long-lasting behavioural effects? Although extracellular 267 
neuropeptide concentrations differ from site to site, similar changes are often seen at widely separated sites 268 
[16]. Peptide release within the brain is not specifically targeted to synapses, and as the half-lives of peptides 269 
in the central nervous system can be up to 20 min [102], there is time for considerable movement of peptides 270 
by diffusion and bulk flow in the extracellular fluid and cerebrospinal fluid. The dendrites of MCNs project 271 
towards the brain surface and make close contact with ependymal cells that line the ventricular spaces. The 272 
reason for this may be twofold. The dendrites can register the neurochemical composition of the CSF and they 273 
can send their messages into the CSF circulation. Neuropeptides administered intracerebroventricularly lead 274 
to coherent and purposeful behaviours.  275 
 276 

277 

 278 

279 

Priming appears to be the key phenomenon underlying the intermittent burst discharge that oxytocin 280 
cells display in response to suckling during the milk-ejection reflex. Under basal conditions, oxytocin neurons 281 
are continuously active, but, in the pregnant animal during parturition and in the lactating animal in response 282 
to suckling, oxytocin cells discharge approximately synchronously with brief, intense bursts of action 283 
potentials; these bursts release into the circulation large boluses of oxytocin which result in intense 284 
contractions of the pregnant uterus or milk let-down from the mammary glands. For oxytocin neurons, 285 
dendritic release of oxytocin, which is up-regulated during parturition and in lactation, has an essential role in 286 
the generation of these intermittent synchronized bursts [103]. The bursting activity can be blocked by 287 
administration of oxytocin antagonists into the SON, and can be facilitated by local administration of oxytocin 288 
agonists [104].  289 

After a priming signal, activity-dependent oxytocin release from dendrites might lead to positive-290 
feedback coupling between oxytocin cells, producing the intense synchronized bursts observed during 291 
parturition and suckling. In each of these cases, the actions of the dendritically-released oxytocin are not 292 
restricted to the cell of origin, but are also exerted on the dendrites of other oxytocin cells, possibly to facilitate 293 
homotypic interactions. 294 
 295 

296 

 Control of body homeostasis by the PVN requires the generation of complex but orchestrated 297 
neurohumoral responses, generally consisting of a “neuronal” component (i.e., changes in 298 
sympathetic/parasympathetic outflows to different target organs) along with a “humoral” response, 299 
represented by the release of different neurohormones, including vasopressin, angiotensin and endothelins 300 
among others [105-107]. These neurohumoral responses generated by the PVN are critically important for the 301 
maintenance of cardiovascular and fluid balance homeostasis. A characteristic example of such an integrative 302 
homeostatic response is that following a central osmotic challenge, which evokes a coordinated increase in 303 
renal symapathetic nerve activity together with a concomitant increase in circulating levels of vasopressin. 304 
These responses are coordinated by the PVN, and result in proper adjustments in water and Na+ reabsorption 305 
by the kidneys, leading in turn to reestablishment of fluid/electrolyte balance in response to the osmotic 306 
challenge [108]. We recently demonstrated that dendritically released vasopressin plays a pivotal role in this 307 
homeostatic response. We found that a central osmotic challenge evoked an increase in dendritic release of 308 
vasopressin from MCNs, which on diffusion in the extracellular space, participated in the recruitment of 309 
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neighbouring presympathetic PVN neurons. This interpopulation crosstalk resulted in turn in a in a proper 310 
renal sympathoexcitatory homeostatic response. Thus, dendritic release of vasopressin is a critical signalling 311 
modality contributing to the ability of the PVN to orchestrate the activity of distinct populations of neurons, 312 
and thus, the generation of multimodal homeostatic response.  313 
 314 

315 

Both peptides evoke specific effects on behaviour [109-111]. For example, oxytocin is involved in social 316 
behaviours, including bonding and maternal behaviour, and vasopressin acts in the brain to affect social 317 
recognition and aggression. We recently identified populations of vasopressin-expressing neurons in the main 318 
and accessory olfactory bulb and in the anterior olfactory nucleus, a region of olfactory cortex that transmits 319 
and processes information in the main olfactory system [112-114]. Both vasopressin and oxytocin modulate 320 
conspecific social recognition at the level of the olfactory system and we proposed a model by which the 321 
somato-dendritic priming and release of vasopressin in main olfactory regions may facilitate the formation of 322 
short-term social odour memories [112]. 323 
 324 
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Figure 1) Vasopressin and oxytocin system of the hypothalamus: 

A) Coronal section through the rat hypothalamus at the level of the supraoptic (SON) and paraventricular 

nuclei (PVN); vasopressin cells are immunostained with fluorescent green and oxytocin cells with fluorescent 

red. Ai) In the SON the dendrites project towards the ventral surface of the brain where they form a dense 

plexus (arrow). B) LDCVs in a coronal section of a SON dendrite. C) An ‘omega’ fusion profile at the plasma 

membrane (arrow) indicates exocutosis. D) Close anatomical relationships among the dendrites of MCNs 

vasopressin (green) and retrogradely labeled presympathetic neurons from the rostral ventrolateral medulla 

(red) in the PVN. Di-Dii) Progressively higher magnification of D showing thick and varicose 

immunoreactive dendrites from MCN vasopressin cell dendrites in close apposition with the somata and 

dendrites of presympathetic neurons. Modified from [8, 16].  
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