216 research outputs found

    AMS 3.0: prediction of post-translational modifications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present here the recent update of AMS algorithm for identification of post-translational modification (PTM) sites in proteins based only on sequence information, using artificial neural network (ANN) method. The query protein sequence is dissected into overlapping short sequence segments. Ten different physicochemical features describe each amino acid; therefore nine residues long segment is represented as a point in a 90 dimensional space. The database of sequence segments with confirmed by experiments post-translational modification sites are used for training a set of ANNs.</p> <p>Results</p> <p>The efficiency of the classification for each type of modification and the prediction power of the method is estimated here using recall (sensitivity), precision values, the area under receiver operating characteristic (ROC) curves and leave-one-out tests (LOOCV). The significant differences in the performance for differently optimized neural networks are observed, yet the AMS 3.0 tool integrates those heterogeneous classification schemes into the single consensus scheme, and it is able to boost the precision and recall values independent of a PTM type in comparison with the currently available state-of-the art methods.</p> <p>Conclusions</p> <p>The standalone version of AMS 3.0 presents an efficient way to indentify post-translational modifications for whole proteomes. The training datasets, precompiled binaries for AMS 3.0 tool and the source code are available at <url>http://code.google.com/p/automotifserver</url> under the Apache 2.0 license scheme.</p

    Distribution of immunodeficiency fact files with XML – from Web to WAP

    Get PDF
    BACKGROUND: Although biomedical information is growing rapidly, it is difficult to find and retrieve validated data especially for rare hereditary diseases. There is an increased need for services capable of integrating and validating information as well as proving it in a logically organized structure. A XML-based language enables creation of open source databases for storage, maintenance and delivery for different platforms. METHODS: Here we present a new data model called fact file and an XML-based specification Inherited Disease Markup Language (IDML), that were developed to facilitate disease information integration, storage and exchange. The data model was applied to primary immunodeficiencies, but it can be used for any hereditary disease. Fact files integrate biomedical, genetic and clinical information related to hereditary diseases. RESULTS: IDML and fact files were used to build a comprehensive Web and WAP accessible knowledge base ImmunoDeficiency Resource (IDR) available at . A fact file is a user oriented user interface, which serves as a starting point to explore information on hereditary diseases. CONCLUSION: The IDML enables the seamless integration and presentation of genetic and disease information resources in the Internet. IDML can be used to build information services for all kinds of inherited diseases. The open source specification and related programs are available at

    Discovery of catalases in members of the Chlamydiales order.

    Get PDF
    Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment

    CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid development of structural genomics has resulted in many "unknown function" proteins being deposited in Protein Data Bank (PDB), thus, the functional prediction of these proteins has become a challenge for structural bioinformatics. Several sequence-based and structure-based methods have been developed to predict protein function, but these methods need to be improved further, such as, enhancing the accuracy, sensitivity, and the computational speed. Here, an accurate algorithm, the CMASA (Contact MAtrix based local Structural Alignment algorithm), has been developed to predict unknown functions of proteins based on the local protein structural similarity. This algorithm has been evaluated by building a test set including 164 enzyme families, and also been compared to other methods.</p> <p>Results</p> <p>The evaluation of CMASA shows that the CMASA is highly accurate (0.96), sensitive (0.86), and fast enough to be used in the large-scale functional annotation. Comparing to both sequence-based and global structure-based methods, not only the CMASA can find remote homologous proteins, but also can find the active site convergence. Comparing to other local structure comparison-based methods, the CMASA can obtain the better performance than both FFF (a method using geometry to predict protein function) and SPASM (a local structure alignment method); and the CMASA is more sensitive than PINTS and is more accurate than JESS (both are local structure alignment methods). The CMASA was applied to annotate the enzyme catalytic sites of the non-redundant PDB, and at least 166 putative catalytic sites have been suggested, these sites can not be observed by the Catalytic Site Atlas (CSA).</p> <p>Conclusions</p> <p>The CMASA is an accurate algorithm for detecting local protein structural similarity, and it holds several advantages in predicting enzyme active sites. The CMASA can be used in large-scale enzyme active site annotation. The CMASA can be available by the mail-based server (<url>http://159.226.149.45/other1/CMASA/CMASA.htm</url>).</p

    Characterization of Profilin Polymorphism in Pollen with a Focus on Multifunctionality

    Get PDF
    Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future

    RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site.</p> <p>Description</p> <p>We have developed the RAS Oncogene Database (RASOnD) as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i) browse the data (ii) search any field through a simple or advance search interface and (iii) perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD.</p> <p>Conclusions</p> <p>This database is a resource and search tool dedicated to Ras oncogenes. It has utility to cancer biologists and cell molecular biologists as it is a ready source for research, identification and elucidation of the role of these oncogenes. The data generated can be used for understanding the relationship between the Ras oncogenes and their association with cancer. The database updated monthly is freely accessible online at <url>http://202.141.47.181/rasond/</url> and <url>http://www.aiims.edu/RAS.html</url>.</p

    Comparative genomics in cyprinids: common carp ESTs help the annotation of the zebrafish genome

    Get PDF
    BACKGROUND: Automatic annotation of sequenced eukaryotic genomes integrates a combination of methodologies such as ab-initio methods and alignment of homologous genes and/or proteins. For example, annotation of the zebrafish genome within Ensembl relies heavily on available cDNA and protein sequences from two distantly related fish species and other vertebrates that have diverged several hundred million years ago. The scarcity of genomic information from other cyprinids provides the impetus to leverage EST collections to understand gene structures in this diverse teleost group. RESULTS: We have generated 6,050 ESTs from the differentiating testis of common carp (Cyprinus carpio) and clustered them with 9,303 non-gonadal ESTs from CarpBase as well as 1,317 ESTs and 652 common carp mRNAs from GenBank. Over 28% of the resulting 8,663 unique transcripts are exclusively testis-derived ESTs. Moreover, 974 of these transcripts did not match any sequence in the zebrafish or fathead minnow EST collection. A total of 1,843 unique common carp sequences could be stringently mapped to the zebrafish genome (version 5), of which 1,752 matched coding sequences of zebrafish genes with or without potential splice variants. We show that 91 common carp transcripts map to intergenic and intronic regions on the zebrafish genome assembly and regions annotated with non-teleost sequences. Interestingly, an additional 42 common carp transcripts indicate the potential presence of new splicing variants not found in zebrafish databases so far. The fact that common carp transcripts help the identification or confirmation of these coding regions in zebrafish exemplifies the usefulness of sequences from closely related species for the annotation of model genomes. We also demonstrate that 5' UTR sequences of common carp and zebrafish orthologs share a significant level of similarity based on preservation of motif arrangements for as many as 10 ab-initio motifs. CONCLUSION: Our data show that there is sufficient homology between the transcribed sequences of common carp and zebrafish to warrant an even deeper cyprinid transcriptome comparison. On the other hand, the comparative analysis illustrates the value in utilizing partially sequenced transcriptomes to understand gene structure in this diverse teleost group. We highlight the need for integrated resources to leverage the wealth of fragmented genomic data

    A structure filter for the Eukaryotic Linear Motif Resource

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many proteins are highly modular, being assembled from globular domains and segments of natively disordered polypeptides. Linear motifs, short sequence modules functioning independently of protein tertiary structure, are most abundant in natively disordered polypeptides but are also found in accessible parts of globular domains, such as exposed loops. The prediction of novel occurrences of known linear motifs attempts the difficult task of distinguishing functional matches from stochastically occurring non-functional matches. Although functionality can only be confirmed experimentally, confidence in a putative motif is increased if a motif exhibits attributes associated with functional instances such as occurrence in the correct taxonomic range, cellular compartment, conservation in homologues and accessibility to interacting partners. Several tools now use these attributes to classify putative motifs based on confidence of functionality.</p> <p>Results</p> <p>Current methods assessing motif accessibility do not consider much of the information available, either predicting accessibility from primary sequence or regarding any motif occurring in a globular region as low confidence. We present a method considering accessibility and secondary structural context derived from experimentally solved protein structures to rectify this situation. Putatively functional motif occurrences are mapped onto a representative domain, given that a high quality reference SCOP domain structure is available for the protein itself or a close relative. Candidate motifs can then be scored for solvent-accessibility and secondary structure context. The scores are calibrated on a benchmark set of experimentally verified motif instances compared with a set of random matches. A combined score yields 3-fold enrichment for functional motifs assigned to high confidence classifications and 2.5-fold enrichment for random motifs assigned to low confidence classifications. The structure filter is implemented as a pipeline with both a graphical interface via the ELM resource <url>http://elm.eu.org/</url> and through a Web Service protocol.</p> <p>Conclusion</p> <p>New occurrences of known linear motifs require experimental validation as the bioinformatics tools currently have limited reliability. The ELM structure filter will aid users assessing candidate motifs presenting in globular structural regions. Most importantly, it will help users to decide whether to expend their valuable time and resources on experimental testing of interesting motif candidates.</p
    corecore